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Abstract In a variety of emerging energy applications such
as photovoltaic conversion, thermo-electric conversion, elec-
trochromic actuation, artificial photosynthesis, etc., the cap-
ture and trapping of light on a surface is a critical first step
in a multistage process. The functionalization of a surface
by adding small-scale features, such as fine-scale rods, to
trap incoming light, is one possible approach. In this paper, a
model that is amenable to large-scale computation is devel-
oped. The approach provides a computational tool that allows
analysts to quickly study a wide variety of rod-like micro-
structures. Both analytical and large-scale computational
results are presented.

Keywords Surface functionalization · Rod-like
microstructure · Light-capture

1 Introduction

The main application of interest in this work is the model-
ing and simulation of the optical response of surfaces that
have been modified (“functionalized”) with rod-like micro-
structures to absorb light. The absorption of light is a critical
step in a multi-stage process of harnessing light for emerging
energy conversion technologies, such as photovolatic con-
version, thermo-electric conversion, artificial photosynthe-
sis, etc. More applications are discussed in the concluding
remarks of this paper. There are a variety of industrial tech-
niques for surface functionalization, and we refer the reader
to Guenther [5], Hawkeye and Brett [6], Macleod [8], Mess-
ier et al. [11] and the surveys of the state of the art found in
Martin [9] and [10].
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In this work, we only focus on the absorption of optical
wave-length energy, and do not address the subsequent pro-
cesses that harness the captured light. Specifically, the charac-
terization of the flow of optical energy, the irradiance, through
such systems is the primary objective. It is assumed that the
rods and surface features are at least an order of magnitude
larger than the wavelength of the incident electromagnetic
radiation, therefore “geometrical” ray tracing theory is appli-
cable. Resolving diffraction, for the applications of interest
here (whichray theory is incapableofdescribing) isofsecond-
ary importance to the overall propagation of energy (which
ray theory captures quite well). Ray-tracing is particularly
well-suited to the analysis of such systems. For review of the
state-of-the-art in ray-tracing, see Gross [4]. Generally, the
interesthere isonbehaviorof initiallycoherentbeams(Fig.1),
composed of multiple collinear (collimated) rays (initially
forming a planar wave front), where each ray is a vector in the
direction of the flow of electromagnetic energy (the rays are
parallel to the initial wave’s propagation vector (Fig. 1)).

Ray-tracing is a method that is employed to produce
rapid approximate solutions to wave-equations for high-fre-
quency/small-wavelength applications. Essentially, ray-trac-
ing methods proceed by initially representing wave fronts by
an array of discrete rays. Thereafter, the problem becomes
one of an essentially geometric character, where one tracks
the changing trajectories and magnitudes of individual rays
which are dictated by the Fresnel conditions (if a ray encoun-
ters a material interface). Ray-tracing methods are well-
suited for computation of scattering in complex systems that
are difficult to mesh/discretize, relative to procedures such as
the Finite Difference Time Domain Method or the Finite Ele-
ment Method and, therefore, they are frequently employed
by analysts in such situations.

This paper investigates the sensitivity of high frequency
electromagnetic energy propagation, the irradiance, through
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systems of multiple rod-like scatterers. The current work
builds on studies of ray propagation through particulate
media by Zohdi [15–18]. It is assumed that the length-scale
of the surface features of the rods are large enough, relative
to the optical wavelength, that the reflections are specular
(coherent) and not diffuse, thus allowing ray tracing theory to
be employed. Specifically, the regimes of interest are where
the scatterers and surface features are larger than visible light
rays: 3.8×10−7m ≤ λ ≤ 7.8×10−7m. Thus, the rods in this
analysis are assumed to possess diameters larger than approx-
imately 10−5m (10μ). Ray tracing theory is employed, under
the assumption that the surface features of the rods are large
enough, relative to the ray wavelength, that such a framework
is justified. For rod-like systems smaller than this, one can
simply use the ensuing results as rough qualitative guides.

Remark Other high frequency applications where ray-trac-
ing could be used include: (a) regimes where the scatterers
and surface features are larger than ultraviolet rays (10−9m ≤
λ ≤ 10−8m), (b) regimes where the scatterers and surface
features are larger than X-rays (10−11m ≤ λ ≤ 10−9m),
and (c) regimes where the scatterers and surface features are
larger than gamma-rays (10−12m ≤ λ ≤ 10−11m).

2 Background: electromagnetic waves

The propagation of electromagnetic waves in free space can
be described by a simplified form of Maxwell’s equations

∇ × E = −μo
∂H
∂t
, and ∇ × H = εo

∂E
∂t
, (2.1)

where ∇ · H = 0, ∇ · E = 0, E is the electric field intensity,
H is the magnetic flux intensity, εo is the free space permit-
tivity and μo is the free space permeability. Using standard
vector identities, one can show that

∇ × (∇ × E) = −μoεo
∂2E
∂t2 , and

∇ × (∇ × H) = −μoεo
∂2H
∂t2 , (2.2)

and that

∇2E = 1

c2

∂2E
∂t2 , and ∇2H = 1

c2

∂2H
∂t2 , (2.3)

where the speed of electromagnetic waves is c = 1√
εoμo

. All
electromagnetic radiation travels, in a vacuum, at the speed
c ≈ 2.99792458 × 108 ± 1.1 m/s. In any another medium
v = 1√

εμ
for electromagnetic waves.1

1 The free space electric permittivity is εo = 1
c2μo

= 8.8542 ×
10−12 C N−1m−1 and the free space magnetic permeability is μo =
4π × 10−7 W bA−1m−1 = 1.2566 × 10−6 W bA−1m−1.

2.1 Plane harmonic waves and ray representations

Now consider the special case of plane harmonic waves, for
example of the form

E = Eocos(k · r − ωt) and H = Hocos(k · r − ωt),

(2.4)

where r is an initial position vector to the wave front, where
k is the direction of propagation. For plane waves, k · r =
constant . We refer to the phase as φ = k · r − ωt , and
ω = 2π

τ
as the angular frequency, where τ is the period. For

plane waves, the wave front is a plane on which φ is con-
stant, which is orthogonal to the direction of propagation,
characterized by k. In the case of harmonic waves, we have

k × E = μoωH and k × H = −εoωE, (2.5)

and k · E = 0 and k · H = 0. The three vectors, k, E and
H constitute a mutually orthogonal triad.2 The direction of
ray propagation is given by E×H

||E×H|| . The Appendix provides
more details on the theory of ray representations of electro-
magnetic waves.

2.2 Special case: natural (random) electromagnetic energy
propagation

Electromagnetic waves travelling through space carry elec-
tromagnetic energy which flows in the direction of wave
propagation. The energy per unit area per unit time flowing
perperdicularly into a surface in free space is given by the
Poynting vector S = E ×H. Since at high-frequencies E, H
and S oscillate rapidly, it is impractical to measure instanta-
neous values of S directly. Consider the harmonic represen-
tations in Eq. 2.4 which leads to S = Eo×Hocos2(k ·r−ωt),
and consequently the average value over a longer time inter-
val (T ) than the time scale of rapid random oscillation,

〈S〉T = Eo × Ho〈cos2(k · r − ωt)〉T = 1

2
Eo × Ho, (2.6)

leading to the definition of the irradiance

I
def= 〈||S||〉T = 1

2
||Eo × Ho|| = 1

2

√
εo

μo
||Eo||2. (2.7)

Thus, the rate of flow of energy is proportional to the
square of the amplitude of the electric field. Furthermore, in
isotropic media, which we consider for the remainder of the
work, the direction of energy is in the direction of S and in
the same direction as k. Since I is the energy per unit area
per unit time, if we multiply by the “cross-sectional” area of
the ray (ar ), we obtain the energy associated with the ray,
denoted as I ar = I ab/Nr , where ab is the cross-sectional

2 By combining the relations in Eq. 2.5 one obtains ||k|| = ω
c .
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Fig. 1 The scattering system considered, consisting of a beam, com-
prised of multiple rays, incident on a collection of rod-like scatterers on
the surface. T he rods are typically grown vertically using silicon, and
then coated with materials for the application of interest

area of a beam (comprising all of the rays) and Nr is the
number of rays in the beam (see Figs. 1, 8).

2.3 Reflection and absorption of energy

One desirable feature of geometrical ray tracing is that rela-
tively elementary concepts are employed, which we motivate
in the next subsection.

2.3.1 Fresnel relations

We consider a plane harmonic wave incident upon a plane
boundary separating two different materials, which produces
a reflected wave and a transmitted (refracted) wave (Fig. 2).
Two cases for the electric field vector are considered: (1)
electric field vectors that are parallel (||) to the plane of inci-

PLANE

INCIDENT RAY

NORMAL

REFLECTED RAY
iΘ Θr

RAY
TRANSMITTED

t
Θ

TANGENT

Fig. 2 The nomenclature for Fresnel’s equations for an incident ray
that encounters an idealized smooth scattering rod

dence and (2) electric field vectors that are perpendicular (⊥)
to the plane of incidence. In either case, the tangential com-
ponents of the electric and magnetic fields are required to be
continuous across the interface. Consider case (1). We have
the following general vectorial representations

E|| = E||cos(k · r − ωt) e1 and

H|| = H||cos(k · r − ωt) e2, (2.8)

where e1 and e2 are orthogonal to the propagation direction
k. By employing the law of refraction (ni sinθi = nt sinθt )

we obtain the following conditions relating the incident,
reflected and transmitted components of the electric field
quantities

E||i cosθi − E||r cosθr = E||t cosθt and

H⊥i + H⊥r = H⊥t . (2.9)

Since, for plane harmonic waves, the magnetic and electric
field amplitudes are related by H = E

vμ
, we have

E||i + E||r = μi

μt

vi

vt
E||t = μi

μt

nt

ni
E||t

def= n̂

μ̂
E||t , (2.10)

where μ̂
def= μt

μi
, n̂

def= nt
ni

and where vi , vr and vt are the val-
ues of the velocity in the incident, reflected and transmitted
directions.3 By again employing the law of refraction, we
obtain the Fresnel reflection and transmission coefficients,
generalized for the case of unequal magnetic permeabilities

r|| = E||r
E||i

=
n̂
μ̂

cosθi − cosθt

n̂
μ̂

cosθi + cosθt
and

t|| = E||t
E||i

= 2cosθi

cosθt + n̂
μ̂

cosθi
. (2.11)

Following the same procedure for case (2), where the com-
ponents of E are perpendicular to the plane of incidence, we
have

r⊥ = E⊥r

E⊥i
=

cosθi − n̂
μ̂

cosθt

cosθi + n̂
μ̂

cosθt
and

t⊥ = E⊥t

E⊥i
= 2cosθi

cosθi + n̂
μ̂

cosθt
. (2.12)

Our primary interest is in the reflections. We define the re-
flectances as

R||
def= r2|| and R⊥

def= r2⊥. (2.13)

3 Throughout the analysis we assume that n̂ ≥ 1.
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Particularly convenient forms for the reflections are

r|| =
n̂2

μ̂
cosθi − (n̂2 − sin2θi )

1
2

n̂2

μ̂
cosθi + (n̂2 − sin2θi )

1
2

and

r⊥ =
cosθi − 1

μ̂
(n̂2 − sin2θi )

1
2

cosθi + 1
μ̂
(n̂2 − sin2θi )

1
2

. (2.14)

Thus, the total energy reflected can be characterized by

R
def=

(
Er

Ei

)2

= E2⊥r + E2||r
E2

i

= I||r + I⊥r

Ii
. (2.15)

If the resultant plane of oscillation of the (polarized) wave
makes an angle of γi with the plane of incidence, then

E||i = Ei cosγi and E⊥i = Ei sinγi , (2.16)

and it follows from the previous definition of I that

I||i = Ii cos2γi and I⊥i = Ii sin2γi . (2.17)

Substituting these expression back into the expressions for
the reflectances yields

R = I||r
Ii

cos2γi + I⊥r

Ii
sin2γi = R||cos2γi + R⊥sin2γi .

(2.18)

For natural or unpolarized electromagnetic radiation, the
angle γi varies rapidly in a random manner, as does the field
amplitude. Thus, since

〈cos2γi (t)〉T = 1

2
and 〈sin2γi (t)〉T = 1

2
, (2.19)

and therefore for natural electromagnetic radiation

I||i = Ii

2
and I⊥i = Ii

2
. (2.20)

and therefore

r2|| =
(

E2||r
E2||i

)2

= I||r
I||i

and r2⊥ =
(

E2⊥r

E2⊥i

)2

= I⊥r

I⊥i
.

(2.21)

Thus, the total reflectance becomes

R = 1

2
(R|| + R⊥) = 1

2
(r2|| + r2⊥), (2.22)

where 0 ≤ R ≤ 1. For the cases where sinθt = sinθi
n̂ > 1,

one may rewrite reflection relations as

r|| =
n̂2

μ̂
cosθi − j (sin2θi − n̂2)

1
2

n̂2

μ̂
cosθi + j (sin2θi − n̂2)

1
2

and

r⊥ =
cosθi − 1

μ̂
j (sin2θi − n̂2)

1
2

cosθi + 1
μ̂

j (sin2θi − n̂2)
1
2

, (2.23)
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Fig. 3 The reflectance (R) as a function of incident angle

where, j = √−1, and in this complex case4

R||
def= r||r̄|| = 1, and R⊥

def= r⊥r̄⊥ = 1, (2.24)

where r̄|| and r̄⊥ are complex conjugates. Thus, for angles
above the critical angle θ∗

i , all of the energy is reflected.
Notice that as n̂ → 1 we have complete absorption, while as
n̂ → ∞ we have complete reflection. The total amount of
absorbed power by the rods is (1 − R)Ii . Thermal (infrared)
coupling effects, which are outside of the scope of this paper,
have been accounted for in Zohdi [16].

Remark In order to see the dependency of R on n̂ and θi we
can explicitly write

R = 1

2

⎛
⎜⎝

⎛
⎝ n̂2

μ̂
cosθi − (n̂2 − sin2θi )

1
2

n̂2

μ̂
cosθi + (n̂2 − sin2θi )

1
2

⎞
⎠

2

+
⎛
⎝cosθi − 1

μ̂
(n̂2 − sin2θi )

1
2

cosθi + 1
μ̂
(n̂2 − sin2θi )

1
2

⎞
⎠

2
⎞
⎟⎠ . (2.25)

Figure 3 illustrates the behavior of R for various n̂, as a func-
tion of θi . For all but n̂ = 2, is there discernible nonmonotone
behavior. The nonmonotone behavior is slight for n̂ = 4, but
nontheless present. Clearly, as n̂ → ∞, R → 1, no matter
what the angle of incidence’s value. Also, as n̂ → 1, provided
that μ̂ = 1, R → 0, i.e. all incident energy is absorbed. With
increasing n̂, the angle for minimum reflectance grows larger.
For more details, we refer the reader to the cited literature in
the references.

2.3.2 Reflectivity

In summary, the angle between the point of contact of a ray
(Fig. 2) and the outward normal to the surface at that point

4 The limiting case
sinθ∗

i
n̂ = 1, is the critical angle (θ∗

i ) case.
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Fig. 4 Parametrized system for optimization. Le f t side view. Right top view and a single cell

is the angle of incidence (θi ). The classical reflection law
states that the angle at which the ray is reflected is the same
as the angle of incidence and that the incoming (incident,
θi ) and outgoing (reflected, θr ) rays lay in the same plane,
and θi = θr . Furthermore, refraction law states that, if the
ray passes from one medium into a second one (with a dif-
ferent index of refraction), and, if the index of refraction of
the second medium is less than that of the first, the angle
the ray makes with the normal to the interface is always less

than the angle of incidence, where n
def= c

v
=

√
εμ
εoμo

=
sinθi
sinθt

, θt being the angle of the transmitted ray (Fig. 2), c
is the propagation speed in a vacuum and v is the propaga-
tion speed in the incident medium. By using the classical
Fresnel equations, one can also describe the changes in ray
magnitude. Consider a plane harmonic wave incident upon a
boundary separating two different materials, which produces
a reflected wave and a transmitted (refracted) wave (Fig. 2),
the amount of incident electromagnetic energy (Ii ) that is

reflected (Ir ) is given by the total reflectance R
def= Ir

Ii
, where

0 ≤ R ≤ 1e, R given by Eq. 2.25, for unpolarized electro-
magnetic radiation, where n̂ is the ratio of the refractive indi-
ces of the ambient (incident) medium (ni ) and transmitted
rod-like medium (nt ), n̂ = nt/ni , where μ̂ is the ratio of the
magnetic permeabilities of the surrounding incident medium
(μi ) and transmitted rod-like medium (μt ), μ̂ = μt/μi .
We consider applications where the magnetic permeability
is, within experimental measurements, virtually the same for
both the matrix and rod phases. Thus, for the remainder of
the work, we shall take μ̂ = 1 (μo = μi = μt ) and, thus,

n̂ = nt
ni

=
√
εtμt
εiμi

⇒ εtμt = (n̂)2εiμi ⇒ εt = (n̂)2εi , where
εi = εo.

Remark From this point forth, we assume that the ambi-
ent medium (surrounding the rods) behaves as a vacuum.
Accordingly, there are no energetic losses as the rays move
through the surrounding medium.5 Furthermore, we assume

5 Losses could be easily incorporated by using a Beer-Lambert type
decay relation.

that refracted rays which enter a rod are not re-emitted. The
re-emission problem is quite complex, and involves multiple
internal reflections, as well as conversion of electromagnetic
energy into heat. It is important to note that multiple internal
reflections and re-emission also leads to an immense growth
in the number of rays, which is beyond the scope of the
present analysis. However, some of these issues have been
addressed in Zohdi [16].

3 Analytical trends for periodic media and aligned
incidence

3.1 Periodic cell analysis

In order to qualitatively characterize the absorption trends as
a function of rods’ geometry, we consider a periodic array
of (square cross-sectional) rods (the simulations are general,
however). The base is assumed to play no role, i.e. it is trans-
parent. Referring to the configuration in Fig. 4, and consid-
ering a periodic cell, we define the following:

• An individual incoming ray: I i
I ,

• An individual reflected ray from the top: I top,i
R = R(φ)I i

I ,
where φ = π

2 − θ ,
• An individual reflected ray, that undergoes M side-wall

reflections: I side,i
R = RM (θ)I i

I , where M = h
(L−t)tanθ .

With these definitions, we can characterize, for Nr incoming
rays on a cell:

• The total incoming rays: I total
I = Nr I i

I ,

• The percentage of reflected rays from the top: I top,total
R =

R(φ)I i
I

Nr t2

L2 ,
• The percentage of reflected rays, that undergo m side-wall

reflections: I side,total
R = RM (θ)I i

I
Nr (L−t)t

L2 ,
• The percentage of reflected rays, that encounter the empty

region: I empty,total
R = I i

I
Nr (L−t)L

L2 .
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Fig. 5 The behavior with
n̂ = 2.5, h = L and varying θ
and t
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Fig. 6 The behavior with n̂ = 2.5, h = L , Le f t varying t with fixed angle θ = π/100 and right varying θ with fixed t = 0.9L (these plots are
cross-sections of Fig. 5)

The total absorbed by the rods in the periodic cell is:

A
def= I total

I − I empty,total
R −

(
I top,total

R + I side,total
R

)
,

(3.1)

or, explicitly, normalizing A by I total
I

Â
def= A

I total
I

= t

L
−

(
t2

L2 R(φ)+
(

t

L
− t2

L2

)
RM (θ)

)
,

(3.2)

Carpet plots of t − θ -dependence of Â is shown in Fig. 5.
Cross-sections of the carpet plot are shown in Fig. 6. The

plots indicate that for very thick systems, and an absorption
of near Â = 0.8 is possible, with relative large values of θ .
However, the effect drops off for very large θ , because of a
decreasing number of side-wall reflections. We note that in
the plots, M is treated as a continuous variable.

3.2 Asymptotic cases: absorption as a function of t

There are two asymptotic cases that are of interest:

• (CASE 1) For shallow angles (small θ ), there is a
unique optimal t . This is due to the competition between

123



Comput Mech

absorption from the tops and intra-rod reflection. Asymp-

totically, as θ → 0, R(φ) → 1, R(θ) =
(

n̂−1
n̂+1

)2
<

1, M → ∞

Â → t

L

(
1 − t

L

)
, (3.3)

which has a unique maximizer at t = L
2 . Plugging in this

value yields Â(L/2) = 0.25.
• (CASE 2) For deeper angles, asymptotically, as θ →

π
2 , R(θ) → 1, R(φ) =

(
n̂−1
n̂+1

)2
< 1, M → 0 there is

no optimum; absorption increases with t (the cross-sec-
tional area of the rods)

Â → t

L

(
1 − t

L
R(φ)

)
, (3.4)

until t = L .

Remark In order to determine the extremum as a function of
t , one computes (noting that M = M(t))

∂ Â

∂t
= 1

L
− 2t

L2 R(φ)− 1

L
RM (θ)+ 2t

L2 RM (θ)

−
(

t

L
− t2

L2

) (
RM (θ)ln R(θ)

h

(L − t)2tanθ

)
= 0,

(3.5)

which provides a formula for extremum choices of t . Solu-

tions to the above are denoted t∗. If t∗ satisfies ∂2 Â
∂t2 > 0,

then it is a minimizer of Â, while if t∗ satisfies ∂
2 Â
∂t2 < 0, then

it is a maximizer of Â. Clearly, such an expression allows
one to determine the optimal inclination, thus controlling θ
for the desired absorption. In order to determine simulta-
neous extrema pair of θ and t , one can attempt to use New-
ton’s scheme, forming the Hessian and Gradient and solve
for i = 1, 2, ..., N ,⎡
⎣

∂2 Â
∂t2

∂2 Â
∂t∂θ

∂2 Â
∂θ∂t

∂2 Â
∂θ2

⎤
⎦

[
(t i+1 − t i )

(θ i+1 − θ i )

]
= −

⎡
⎣ ∂ Â

∂t

∂ Â
∂θ
.

⎤
⎦ (3.6)

However, because the system may not necessarily have
unique minima, the Hessian may not be positive definite, and
thus nonconvex optimization tecniques may need to be used.

4 General rod-like systems

4.1 Computational algorithms

In order to consider more complex scattering systems, i.e.
potentially non-aligned rays, randomly placed rods, etc, we

employ the following computational algorithm to propagate
rays is as follows, starting at pseudo-time t = 0 and ending
at t = T :

(1)COMPUTE POSSIBLE RAY REFLECTIONS :

(a)CHECK IF A RAY HAS ENCOUNTERED A SURFACE

(b)IF SO, USE THE FRESNEL RELATIONS FOR
TRAJECTORY CHANGE :

(i)C O M PU T E SU RF AC E N O RM AL AT
C O N T ACT/SU RF AC E − I N T E RSECT I O N
P O I N T :

(1)F O R A SU RF AC E �(x1, x2, x3) = 0 C O M PU T E
I N T E RSECT I O N

(2)C O M PU T E N O RM AL n = ∇�(x1,x2,x3)||∇�(x1,x2,x3)||

(3)C O M PU T E RE F L ECT E D AN GL E
RE L AT I V E T O T H E N O RM AL (I N P L AN E)

(i i)C O M PU T E AN GL E C H AN G E F O R
RE F L ECT E D R AY

(c)COMPUTE ABSORPTION BY RODS AND RAY
MAGNITUDE CHANGE

R = 1
2

⎛
⎝

(
n̂2
μ̂

cosθi −(n̂2−sin2θi )
1
2

n̂2
μ̂

cosθi +(n̂2−sin2θi )
1
2

)2

+
(

cosθi − 1
μ̂
(n̂2−sin2θi )

1
2

cosθi + 1
μ̂
(n̂2−sin2θi )

1
2

)2
⎞
⎠ ,

(2) INCREMENT ALL RAY FRONT POSITIONS :

ri (t +�t) = ri (t)+�tvi (t), i = 1, ..., R AY S

(3)GO TO (1) AND REPEAT WITH (t = t +�t)

(4.1)

The time-marching, “pseudo-time”, step size �t is dictated
by the size of the rods. A somewhat ad-hoc approach is to
scale the time step size according to �t ∝ ξb

||v|| , where b is
the radius of the rods, ||v|| is the magnitude of the velocity of
the rays and ξ is a scaling factor, typically 0.05 ≤ ξ ≤ 0.1.

4.2 An example: aligned and mis-aligned rods

In the following examples, the primary quantity of interest is
to characterize the response of the irradiance of a beam (cir-
cular in cross-section), encountering a collection of rods (of
circular cross-section). In the first example, we considered a
group of Nrods rods, of equal size, on a rectangular domain
of dimensions, D × D. The relative (to the surrounding (vac-
uum) medium) refractive indices of the rods was set to n̂ = 4,
which essentially indicates that each rod is highly reflective.
We used Nrods = 25 rods and Nrays = 1,000 colinear rays
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TRACK ENERGY ABSORPTION
SUBUNITS WITHIN RODS TO

Fig. 7 Subunit (cylinders) within a cylindrical rod to track energy
absorption along the rods

in the beam, randomly arranged in a circular domain. This
system provided stable results, i.e. increasing the number of
rays and/or the number of rods beyond these levels resulted in
negligibly different overall system responses. The irradiance
beam parameter was set to Io = ||I (0)||, which is the mag-
nitude of the initial irradiance at time t = 0. The irradiance
for each ray was calculated as I ab/Nrays . Due to the prob-
lem’s linearity, it is insensitive to the initial magnitude of Io

(it scales out). We repeatedly refined the number of rays and
found no significant difference beyond the 1,000 ray result.
Therefore, we consider the responses to be, for all practical
purposes, independent of the ray-grid density. This rod/ray
system provided stable results, i.e. increasing the number of
rays and/or the number of rods surrounding the beam resulted
in negligibly different overall system responses. The simu-
lations were run until the rays completely exited the domain,
which corresponded to a time-scale on the order of D

c . The
initial velocity vector for all of the initially co-linear rays
comprising the beam was v(t = 0) = c(cos π4 , sin π4 , 0)
(inclined angle of incidence) (Fig. 7). Figure 8 shows suc-
cessive frames of the rays as they move through the system.
Figure 10 illustrates the total energy content in the rays as a
function of time. The color of the vectors indicate the irradi-
ance, while the color of the rods indicate the absorption of the
irradiant energy. The remaining energy has been absorbed
by the rods. At steady-state, 50 % of the energy has been
absorbed by the aligned system. As a second example, we
randomly distributed the 25 cylindrical rods (random direc-
trices) as shown in a square beam cross-section (Fig. 9). The
initial velocity vector for all of the initially co-linear rays
comprising the beam was v(t = 0) = (c, 0, 0) (direct angle
of incidence). Figure 9 shows successive frames of the rays
as they move through the system. Figure 10 illustrates the
total energy (irradiance) content in the rays as a function of
time. It is notable that relative to the the aligned rods case,
the misaligned rods case blocks (reflects back) considerably
more energy. The remaining energy has been absorbed by the

rods. At steady-state, 75 % of the energy has been absorbed
by the misaligned system.

5 Concluding remarks

This paper studied optical scattering through a system of
rods analytically and numrically. Ray tracing theory was
employed, and was justified due to the size of the scatterers
relative to the wavelength of incident electromagnetic radi-
ation. It is important to recognize that one can describe the
aggregate ray behavior in an even more detailed manner via
higher moment distributions of rays, for example employ-
ing the skewness, kurtosis, etc. Furthermore, it is important
to note that for the ray tracing method, there are two natural
ways to proceed to exploit parallelism: (1) By assigning each
processor its share of the rays, and checking which scatterers
interact with those rays or (2) By assigning each processor
its share of scatterers, and checking which rays interact with
those scatterers. High-performance computational methods
for the determination of ray/rod intersection can be developed
by slightly modifying fast ray-rod contact detection algo-
rithms found in, for example, Pöschel and Schwager [12],
for general object shapes.

The dramatic rise in readily available computational
power has made the implementation and use of the preceed-
ing model potentially readily accessible. In closing, we men-
tion a variety of applications for rod-functionalized surfaces
that can profit from such a computational tool. A rather obvi-
ous application is the optical response of naturally occurring
“furry” surfaces, which is clearly of interest in biological
studies (Preciado et al. [13]). However, a very closely related
topic is the optical response of hair, which has been of inter-
est to the cosmetics industry for many years (Stamm et al.
[14]), but with studies that have been limited to experimental
studies and/or simple models, due to a lack of computational
power. Of concern there is the overall reflectivity of sur-
faces covered with natural and synthetic hair-like surfaces,
as a function of the hair strand density, color, length, angle
of inclination, cross-section, surface-treatment and whether
the strands are combed or entangled. The presented model
is amenable to large-scale computation that can ascertain
the response of an entire set of strands (reflecting surfaces)
by directly computing the propagation of light rays inter-
acting with the multiple reflecting surfaces. The approach
provides a computational tool that allows analysts to quickly
study a wide variety of hair-like configurations. Clearly, this
tool allows an analyst to compute the reflectivity of a variety
of relevant parameter-combinations, which can help in the
development of synthetic hair, hair products, etc. This also
has implications for the construction of new synthetic hair-
like cloaking and signal response masking surface materials.
Another application is the reflectivity of composites, which
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Fig. 8 Starting from left to right and top to bottom, the progressive
movement of rays (initially with inclined angle of incidence v(t = 0) =
c(cos π4 , sin π4 , 0)) comprising a beam. The color of the vectors indicate

the irradiance, while the color of the rods indicate the absorption of the
irradiant energy

comprise a wide variety of high-performance structures, such
as automobiles and aircraft. Finally, the “tuned/functional-
ized” energy-absorption properties of materials in the photo-
voltaic industry by surface deposition of rod-like material is
now starting to generate large interest in the materials com-
munity (Kelzenberg et al. [7] and Garnett and Yang [3]). The
use of the presented analysis for all of the mentioned appli-
cations is under current investigation by the author.

Appendix: Geometrical ray theory

Following a somewhat classical analysis found in, for exam-
ple, Elmore and Heald [2], Cerveny et al. [1] and others, we

consider the propagation of a general disturbance, ψ , gov-
erned by a generic wave equation:

∇2ψ = 1

c2(x)
∂2ψ

∂t2 . (7.1)

Here c(x) is a spatially varying wave speed corresponding
to a general inhomogeneous medium, where c(x) = co in
a homogeneous reference medium and where the refractive
index is defined as n = co/c(x). Consider a trial solution of
the form

ψ(x, t) = A(x)e j (ko S(x)−ωt), (7.2)
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Fig. 9 Starting from left to
right and top to bottom, the
progressive movement of rays
(initially with direct angle of
incidence v(t = 0) = (c, 0, 0))
comprising a beam. The vectors
were removed to clearly see the
energy absorption of the surface
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where A(x) is the amplitude of the disturbance, and where
ko = ω/co = 2π/λ is the wave number in the refer-
ence medium. The function S(x) (dimensions of length) is
known as the “Eikonal”, which in Greek means “image”. One
can interpret a set of waves as simply a family of surfaces
for which the values of koS(x) differ in increments of 2π .
Substituting the trial solution into the wave equation, one
obtains

k2
o A(n2 − ∇S · ∇S)+ jko(2∇ A · ∇S + A∇2S)

+∇2 A = 0. (7.3)

There are a variety of arguments to motivate so-called “Ray
Theory”. Probably the simplest is simply to require that, as
ko → ∞, each of the ko−terms, the zeroth-order ko-term, the
first-order ko-term and the second-order ko-term, must van-
ish. Applying this requirement to the second-order ko-term
yields

n2 = ∇S · ∇S = ||∇S||2. (7.4)

For a uniform medium, n = const , provided ∇2 A = 0 and
an initial plane wave surface S = const , then Eq. 7.3 implies

S(x) = n(αx + βy + φz), (7.5)
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Fig. 10 The aggregate components of the irradiance vectors in the ray
system. Le f t the energy content for the system for the aligned-rod sys-
tem. Right the energy content for the system for the misaligned-rod
system. Much more energy is reflected backwards for the misaligned

case. At steady-state, 50 % of the energy has been absorbed by the
aligned system (initially with inclined angle of incidence v(t = 0) =
c(cos π4 , sin π4 , 0)) and approximately 75 % by the misaligned system
(initially with direct angle of incidence v(t = 0) = (c, 0, 0))

whereα, β andφ are direction cosines. More generally, when
n �= 0, then Eq. 7.4 implies

∇S(x) = n(x)ŝ(x), (7.6)

where ŝ(x) is a unit (direction) vector.
From elementary calculus, recall that ∇S is perpendicu-

lar to S = const . This allows for the natural definition of
continuous curves, called rays, that are everywhere parallel
to the local direction ŝ(x). Rearranging first-order ko-term of
Eq. 7.3

1

A
∇ A · ∇S = −1

2
∇2S = −1

2
∇ · (nŝ). (7.7)

Recalling the directional derivative, d(·)
ds

def= ŝ · ∇(·), we have
( ∇S

||∇S||
)

· ∇ A =
(∇S

n

)
· ∇ A = d A

ds
, (7.8)

where s is the arc-length coordinate along the ray. With this
definition, once S(x) is known, the component of ∇ A in the
ŝ(x) can be found from Eqs. 7.7 and 7.8:

1

A

d A

ds
= − 1

2n
∇ · (nŝ). (7.9)

Thus, we are able to determine how the amplitude of the trial
solution changes along a ray, but not perpendicular to the
trajectory.

Geometrical “ray-tracing”, deals directly with the ray tra-
jectories, rather than finding them as a by-product of the
solution of the wave equation for the Eikonal function S and
the resulting wave front. To eliminate S we need to look at
the rate of change of the quantity nŝ along the ray. Making
repeated use of Eq. 7.6, we have

d(nŝ)
ds

= ŝ · ∇(∇S) = ∇S

n
· ∇(∇S)

= 1

2n
∇(∇S · ∇S) = 1

2n
∇n2 = ∇n,

(7.10)

where d(·)
ds

def= ŝ·∇(·). The previous equation allows us to find
the trajectories of a ray (ŝ), given only the refractive index
n(x) and the initial direction ŝi of the desired ray.

Remark A more general derivation of the eikonal equation
can be found in a variety of textbooks, for example, Cerveny
et al. [1], and starts by assuming a trial solution of the form

ψ(x, t) = A(x)�(t −�(x)) (7.11)

where � is an eikonal function, and the waveform function
α is assumed to be of high frequency.6 This function is then
substituted into the wave equation to yield

∇2 A� + 2∇ A · ∇� + A∇2� = 1

c2 A
∂2�

∂t2 . (7.12)

After using the chain rule of differentiation, this can be writ-
ten as

∂2�

∂�2 A

(
∇� · ∇�− 1

c2

)
+ ∂�

∂�

(
2∇ A · ∇�+ A∇2�

)

+�∇2 A = 0. (7.13)

Analogous to the special case considered before, to motivate
so-called “Ray Theory” one requires that the coefficients of

6 This is a more general case than the one considered in Eq. 7.2 where
�(t −�(x)) = e j (ko S(x)−ωt).
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∂2�
∂�2 ,

∂�
∂�

and � are satisfied separately, in other words, the
following hold

∇� · ∇�− 1

c2 = 0 (7.14)

and

2∇ A · ∇�+ A∇2� = 0 (7.15)

and

∇2 A = 0. (7.16)

References

1. Cerveny V, Molotkov IA, Psencik I (1977) Ray methods in seis-
mology. Univerzita Karlova, Praha

2. Elmore WC, Heald MA (1985) Physics of waves. Dover Publica-
tions re-issue, New York

3. Garnett E, Yang P (2010) (eds) Light trapping in silicon nanowire
solar cells. Nanoletters 10:1082–1087

4. Gross H (2005) Handbook of optical systems. In: Gross H (ed)
Fundamental of technical optics. Wiley, Weinheim

5. Guenther K (1990) Revisiting structure-zone models for thin-film
growth. SPIE 1324:2

6. Hawkeye M, Brett MJ (2007) Glancing angle deposition: fabrica-
tion, properties, and applications of micro- and nanostructured thin
films. J Vac Sci Technol A 25(5):1317

7. Kelzenberg MD, Buettcher SW, Petykiewicz JA, Turner-Evans DB,
Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Att-
water HA (2010) Enhanced absorption and carrier collection in Si
wire arrays for photovoltaic applications. Nat Mater 9:239–244

8. Macleod HA (2001) Thin flim optcal filters, 3rd edn. I. O. P., Bris-
tol

9. Martin P (2009) Handbook of deposition technologies for films
and coatings, 3rd edn. Elsevier, Canada

10. Martin P (2011) Introduction to surface engineering and function-
ally engineered materials. Scrivener and Elsevier, Amsterdam

11. Messier R, Giri AP, Roy R (1984) Revised structure zone for thin
film physical structure. J Vac Sci Technol A 2(2):500

12. Pöschel T, Schwager T (2004) Computational granular dynamics.
Springer, New York

13. Preciado JA, Rubinsky B, Otten D, Nelsen B, Martin M, Greif R
(2002) Radiative properties of polar bear hair. ASME, BED-Vol
53. Advances in Bioengineering, pp 1–2

14. Stamm RF, Garcia ML, Fuchs JJ (1977) The optical properties of
human hair-I. Fundamental considerations and goniophotometer
curves. J Cosmet Chem 28:571–599

15. Zohdi TI (2006) On the optical thickness of disordered particulate
media. Mech Mater 38:969–981

16. Zohdi TI (2006) Computation of the coupled thermo-optical scat-
tering properties of random particulate systems. Comput Methods
Appl Mech Eng 195:5813–5830

17. Zohdi TI, Kuypers FA (2006) Modeling and rapid simulation of
multiple red blood cell light scattering. Proc R Soc Interface
3(11):823–831

18. Zohdi TI (2007) Introduction to the modeling and simulation of
particulate flows. SIAM (Society for Industrial and Applied Math-
ematics), Philadelphia

123


	Modeling and simulation of the optical response rod-functionalized reflective surfaces
	Abstract
	1 Introduction
	2 Background: electromagnetic waves
	2.1 Plane harmonic waves and ray representations
	2.2 Special case: natural (random) electromagnetic energy propagation
	2.3 Reflection and absorption of energy
	2.3.1 Fresnel relations
	2.3.2 Reflectivity


	3 Analytical trends for periodic media and aligned incidence
	3.1 Periodic cell analysis
	3.2 Asymptotic cases: absorption as a function of t

	4 General rod-like systems
	4.1 Computational algorithms
	4.2 An example: aligned and mis-aligned rods

	5 Concluding remarks
	Appendix: Geometrical ray theory
	References


