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This work addresses the modeling and simulation of strongly coupled electromagnetic and thermody-
namic fields that arise in particulate-doped dielectrics using an adaptive staggered adaptive FDTD (finite
difference time domain) method. Of particular interest is to provide a straightforward modular approach
to finding the effective dielectric (electromagnetic) response of a material, incorporating thermal effects,
arising from Joule heating, which alter the pointwise dielectric properties such as the electric permittiv-
ity, magnetic permeability, and electric conductivity. This is important for ‘‘thermal (damage) manage-
ment” of materials used in electromagnetic applications. Because multiple field coupling is present, a
staggered, temporally-adaptive scheme is developed to resolve the internal microstructural electric, mag-
netic and thermal fields, accounting for the simultaneous pointwise changes in the material properties.
Numerical examples are provided to illustrate the approach. Extensions to coupled chemical and
mechanical fields are also provided.
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1. Introduction

1.1. Effective properties

A variety of modern electromagnetic devices employ ‘‘new”
materials, comprised of particulate-doped microstructure (Fig. 1).
The particulates are chosen for their dielectric properties, in order
to modify and enhance the dielectric properties of an easily form-
able matrix material. The overall permittivity of such materials is
defined by
hDiX ¼ �� � hEiX; ð1:1Þ
where h�iX ¼

def frac1jXj
R

X �dX, is the averaging operator and D and E
are the electric flux and electric field vectors within a statistically
representative volume element (RVE) of volume jXj. The quantity
�* is the effective permittivity tensor. Similarly, one can introduce
effective magnetic properties such as

hBiX ¼ l� � hHiX; ð1:2Þ
where B and H are the magnetic flux and magnetic field vectors, and
l* is the effective magnetic permeability.

1.2. Estimates for effective dielectric responses

There are a variety of estimates for effective dielectric con-
stants. The simplest estimates are the so-called Wiener bounds
ll rights reserved.
[44] (1910), h��1i�1
X 6 �

�
6 h�iX, where the upper bound is gener-

ated by assuming that the electric field is uniform throughout
the medium (within a suitable material sample) and the lower
bound is generated by assuming that the electric field flux is
uniform throughout the medium. These inequalities mean that
the eigenvalues of the tensors �� � h��1i�1

X and h�iX � �* are
non-negative. Similar results hold for the magnetic field
ðhl�1i�1

X 6 l� 6 hliXÞ.
In the case of isotropic materials (� = �1 and l = l1), improved

bounds were developed in 1962 by Hashin and Shtrikman [17]
based on variational principles using the concept of polarization
tensor fields (filtering/separation of micro–macro scales). Based
on these formulations, they developed sharper bounds for the
effective properties. The bounds are as follows, for the overall elec-
trical permittivity

h��1i�1
X 6 �1 þ

v�2
1

�2��1
þ 1�v�2

3�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼def ��;�

6 �� 6 �2 þ
1� v�2
1

�1��2
þ v�2

3�2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼def ��;þ

6 h�iX ð1:3Þ

and the overall magnetic permeability

hl�1i�1
X 6 l1 þ

vl
2

1
l2�l1

þ 1�vl
2

3l1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼def l�;�

6 l� 6 l2 þ
1� vl

2

1
l1�l2

þ vl
2

3l2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
l�;þ

6 hliX; ð1:4Þ

where �2 P �1, l2 P l1, v�2 is the volume fraction of phase with
the larger � value (‘‘phase 2” in the former expression) for the
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Fig. 2. General trends for Sigmoid-type behavior, where / = (1 + e�ax)�1.
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Fig. 1. Tailored dielectric materials constructed from dispersing particles within a
binding matrix.
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permittivity-mismatch and vl
2 is the volume fraction of the phase

with the larger l value (‘‘phase 2” in the latter expression) for the
permeability-mismatch.1 The Hashin–Shtrikman bounds are the
sharpest possible bounds for isotropic effective responses, with
isotropic two phase microstructures, where the only known infor-
mation are the volume fractions and phase contrasts of the constit-
uents. Note that no additional geometric information, such as the
number and nature of particles, contributes to these bounds. These
bounds and other analytical estimates are derived under the
idealized conditions, such as electro- and magneto-statics (which
decouples Maxwell’s equations), non-conducting, loss-less media,
thermal-insensitivity, etc., leading to a simplification that yield trac-
table to analytical solutions.2

Remark. Estimates for the effective properties of heterogeneous
materials date back over 150 years to Maxwell [28,29] and Lord
Rayleigh [36]. For a relatively recent and thorough analysis of a
variety of classical approaches, such as the ones briefly mentioned
here, see Torquato [40] for general interdisciplinary discussions,
Jikov et al. [19] for more mathematical aspects, Aboudi [1], Hashin
and Shtrikman [14,15,17], Hashin [16], Mura [30], Nemat-Nasser
and Hori [31] for solid-mechanics inclined accounts of the subject
and Zohdi and Wriggers [56] for computational aspects.
1.3. Thermal coupling

In general, the properties of most electromagnetic materials are
quite sensitive to the temperature. For example, let us consider the
three main electromagnetic properties, the electrical permittivity,
magnetic permeability and electrical conductivity, in the isotropic
case (� = �1, l = l1 and r = r1). Following common practice, for
electromagnetic materials, we write � = �0�r where �0 =
8.854 � 10�12 farads/meter is the free space permittivity and �r is
the relative permittivity or ‘‘dielectric” constant and
l0 = 4p � 10�7 Ns2/C2 and l = lrl0, where lr is the relative mag-
netic permeability. As a ‘‘model problem” material, we consider
the following decompositions, employing thermo-electromagnetic
saturation conditions (Sigmoid functions, Fig. 2):

� For the electrical permittivity:
1 For
2 For
rx � E
magnet
�ðh;EÞ ¼ �oð1þ vEðh;EÞÞ ¼ �o�rðh;EÞ
¼ �o�rðhR;ERÞEðh� hR;E � ERÞ; ð1:5Þ
where vE is the electric susceptibility, h is the temperature and
the last term is a representation around a reference state, for
example, using saturation-type Sigmoid functions of the form
either case, the volume fraction of the other phase is v1, where v1 + v2 = 1.
example, electrostatics leads to a simplified version of Faraday’s law,

= 0 (E being the electric field), and Ampere’s Law, rx � H = 0 (H being the
ic field).
Eðh� hR;E � ERÞ ¼ 1þKE1 1þ e�aE1ðh�hRÞ
� ��1

þKE2 1þ e�aE2kE�ERk
� ��1

; ð1:6Þ
where the a’s and K’s are material parameters, and the terms
with subscript ‘‘R” are reference values.
� For the magnetic permeability:
lðh;EÞ ¼ loð1þ vHðh;HÞÞ ¼ lolrðh;HÞ
¼ lolrðhR;HRÞHðh� hR;H � HRÞ; ð1:7Þ
where vH is the magnetic susceptibility and, consistent with the
pervious electrical decomposition
Hðh� hR;H � HRÞ ¼ 1þKH1 1þ e�aH1ðh�hRÞ
� ��1

þKH2 1þ e�aH2kH�HRk
� ��1

: ð1:8Þ
� For the electrical conductivity:
rðh;EÞ ¼ rðhR;ERÞ 1þKS1ð1þ e�aS1ðh�hRÞÞ�1
�

þKS2ð1þ e�aS2kE�ERkÞ�1
�
: ð1:9Þ
Generally speaking, for many materials, until a saturation threshold
is met, �r(h,E) grows with h, lr(h,H) decreases with h and r(h) de-
creases with h. Because the electromagnetic field and subsequent
flow of current through real materials leads to Joule heating, pro-
ducing changes in the pointwise material properties, analytical pre-
dictions are somewhat limited, and one must resort to numerical
schemes and so-called ‘‘mesoscale” computation, posed over a sta-
tistically representative volume element sample containing signifi-
cant microstructure (several particles).

Remark. See the treatise of Jackson [18] for reviews of the rich
variety of possible dielectrical responses of materials, including
atomistic-level discussions to motivate non-linear dielectric
behavior. Later, we shall utilize the previously mentioned specific
‘‘model-problem” decompositions (Eqs. (1.5)–(1.9)), however, the
numerical formulations are developed for general cases.
1.4. Numerical methods

In order to properly capture the coupled (transient) electromag-
netic and thermal behavior of a new material, Maxwell’s equations,
coupled to the First Law of Thermodynamics, must be solved
(simultaneously) over a representative volume element. Thereaf-
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ter, the overall thermally-sensitive properties can be directly post-
processed via volumetric averaging. The primary goal of this work
is to develop numerical methods in order to ascertain the effects of
particulates on the overall coupled response of thermally-sensitive
dielectrics. There are a variety of computational electromagnetic
methods (CEM) which can be lumped into two broad categories:
differential equation formulations (DEF) and integral formulations
(IF). In the DEF category, the most wide used techniques is the finite
difference time domain method (FDTD), which is ideally suited to the
problems of interest in this work. FDTD will serve as foundation of
the approach developed in this work. However, in passing we men-
tion other DEF-based methods, such as.

� Multi resolution time domain method: Solution techniques based
on wavelet-based discretization,
� Finite element method: Solution techniques based on discretiza-

tion of variational formulations and which are ideal for irregular
geometries,3

� Pseudo spectral time domain method: Solution techniques based
on Fourier and Chebyshev transforms, followed by a lattice or
grid discretization of the transformed domain,

while in the IF category one has, for example,

� Discrete dipole approximation: Solution techniques based on an
array of dipoles solved iteratively with the conjugate gradient
method and a fast fourier transform to multiply matrices,
� Method of moments: Solution techniques based on integral for-

mulations employing boundary element method discretization,
often accompanied by the fast multipole method to accelerate
summations needed during the calculations,
� Partial element equivalent circuit method: Solution techniques

based on integral equations that are interpreted as circuits in
discretization cells. This approach is ideal for circuit layout
design.

The presentation is broken into three main parts: (1) formu-
lations for each field, identifying the coupling terms, (2) iterative
staggering schemes (including spatial and temporal discretiza-
tion) and (3) numerical examples for model problems. Initially,
we will focus on the electro–magneto–thermo fields, and then
extend the formulations to include chemical and mechanical
fields. The paper utilizes and extends low order (first order in
space and time) FEM-based techniques originally developed in
Zohdi [53,54] to simulate long-term diffusive systems modeling
corrosion and to develop second-order (in both space and time)
FDTD methods for electro–magneto–thermo–chemo–mechano
type systems of interest to the electronics industry. The ap-
proach builds on work found in Zohdi [55], enlarging the types
of fields in the system to include electro–magneto–thermo–che-
mo–mechano type systems, in addition to types of (semi-
conductor-like) constitutive laws for the electric permittivity,
magnetic permeability and electrical conductivity, which are
nonmonotone Sigmoid-type constitutive relations and providing
a more in depth analysis of this type of system behavior. The
developed approach is implicit, second-order accurate and rela-
tively easy to encode. Unlike usual FDTD (explicit) methods, it
is implicit, and is relatively robust, employing an adaptive stag-
gering scheme to capture evolving multiphysics. This formula-
tion is important for material designers who must seek ways
by which to modify a base material, for example by employing
3 In particular, see Demkowicz et al. [7,8] and Rachowicz and Zdunek [35] for the
state of the art in adaptive finite element methods for harmonic Maxwell’s equations.
particulate additives, however, simultaneously avoiding inadver-
dent overheating and thermal stresses.

2. Transient electro–magneto–thermo coupled fields

We now provide the essential field equations that will be used
during the mesoscale computation.

2.1. Electromagnetic fields: Maxwell’s equations

In order to generate the overall (volume averaged) thermo-elec-
tromagnetic response of a heterogeneous continuum sample, we
solve Maxwell’s equations posed over a representative volume ele-
ment (RVE) domain by starting with Faraday’s Law

rx � E ¼ � @B
@t
þMs þ r̂ �H

� �
ð2:1Þ

and Ampere’s Law

rx � H ¼ @D
@t
þ Js þ r � E; ð2:2Þ

where we recall that E is the electric field, D = � � E is the electric
field flux, Js is the source electric current, H is the magnetic field,
B = l � H is the magnetic field flux, Ms is the source ‘‘equivalent
magnetic current”, � is the electric permittivity, l is the magnetic
permeability, r is the electric conductivity and r̂ is the equivalent
magnetic loss. The material is assumed to be heterogeneous (spa-
tially variable), isotropic, and thermally-sensitive.

Remark. Ms is a phenomenological term that frequently appears
in the literature to account for magnetic ‘‘sources/losses” and
‘‘magnetic conduction”. We shall keep these terms throughout the
formulations, but with an implicit ‘‘warning” that they are difficult
to justify from first principles. Furthermore, r̂ can be considered as
the equivalent phenomenological magnetic ‘‘conductivity” (loss).
2.2. Thermodynamics: first law and absorption of energy

The interconversions of various forms of energy (electromag-
netic, thermal, etc.) in a system are governed by the first law of
thermodynamics,

q _w� T : rx _uþrx � q� qz ¼ 0; ð2:3Þ

where w is the stored energy per unit mass (which is a function of
the temperature, h), q is the density, T is Cauchy stress, u is the dis-
placement field, q is heat flux, and qz is the rate of electromagnetic
energy absorbed due to as Joule heating

qz ¼ aðE � Jtot þ H �MtotÞ; ð2:4Þ

where 0 6 a 6 1 is an absorption constant, Jtot ¼def Js þ r � E and
Mtot ¼def Ms þ r̂ �H. We consider the effects of deformation and stress
to be insignificant in the present class of problems (the effects of
stress are considered later), thus

q _wþrx � q� qz ¼ 0 ð2:5Þ

and consider the stored thermal energy per unit mass to be w = Ch
and Fourier’s q ¼ �K � rxh. These assumptions lead to

qC _h�rx �K � rxh� aðE � Jtot þ H �MtotÞ ¼ 0; ð2:6Þ

where C is the heat capacity per unit mass and K is the thermal
conductivity.

Remark 1. As mentioned in the introduction, we consider the
pointwise properties, �(x), l(x) and r(x) to be thermally-depen-
dent, for example, governed by Eqs. (1.5)–(1.9).
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Remark 2. Joule heating can be motivated by forming the inner
product of the magnetic field with Faraday’s law:

H � ðrx � EÞ ¼ �H � Ms þ r̂H|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Mtot

þ @B
@t

0B@
1CA ð2:7Þ

and the inner product of the electric field with Ampere’s law:

E � ðrx � HÞ ¼ E � Js þ rE|fflfflfflffl{zfflfflfflffl}
¼def Jtot

þ @D
@t

0BB@
1CCA: ð2:8Þ

Subtracting Eq. (2.7) from Eq. (2.8) yields

E � ðrx � HÞ � H � ðrx � EÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�rx �ðE�HÞ¼�rx �S

¼ E � Jtot þ H �Mtot þ E � @D
@t
þ H � @B

@t|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼@W

@t

;

ð2:9Þ

where W ¼ 1
2 ðE � DþH � BÞ ¼ 1

2 ðE � � � E þH � l �HÞ is the electro-
magnetic energy and where S = E � H is the Poynting vector. Thus

@W
@t
þrx � S ¼ �ðE � Jtot þ H �MtotÞ: ð2:10Þ

Eq. (2.10) is usually referred to as Poynting’s theorem, and can be
interpreted, for simple material laws, where the previous representa-
tion for W holds, as stating that the rate of change of electromagnetic
energy within a volume, plus the energy flowing out through a
boundary, is equal to the negative of the total work done by the
fields on the sources and conduction. This work is then converted
into thermo-mechanical energy. We consider the absorbed energy
that is available for heating to be proportional to the energy associ-
ated with conduction, namely, from Eq. (2.10), E � Jtot + H �Mtot, and
account for it via qz = a(E � Jtot + H �Mtot), where a is an absorption
constant, 0 6 a 6 1. This type of simple model for heating is often
referred to ‘‘Joule heating”. On a smaller scale, one can interpret
Joule heating as arising from charged particles being pulled through
a medium by electromagnetic fields, which give up some of their ki-
netic energy when they collide with their surroundings, generating
heat.

Remark 3. For illustration purposes, if one considers a one-
dimensional steady-state problem (Fig. 3), ignoring the effects of
stress, and assuming qC _h ¼ qC _w

qC _h ¼ 0 ¼ K
d2h

dx2 þ JE) hðxÞ ¼ hðLÞ þ JE
2K
ðL2 � x2Þ; ð2:11Þ

the maximum temperature becomes (H = JE, and assuming J = rE or
E = RJ)

hð0Þ ¼ hmax ¼ hðLÞ þ RJ2

2K
L2|fflffl{zfflffl}

thermal source

; ð2:12Þ

which clearly shows the contribution of the Joule heating to the rise
in temperature.
x
L

0

−LΘ (     ) x=0 Θ(     )

Θ(   )

Fig. 3. A one-dimensional structure.
3. Numerical simulations: staggering schemes for thermo-
electromagnetically coupled problems

We now develop a staggering solution framework to solve the
coupled systems of interest. The general methodology is as follows
(at at given time increment): (1) each field equation is solved indi-
vidually, ‘‘freezing” the other (coupled) fields in the system, allow-
ing only the primary field to be active and (2) after the solution of
each field equation, the primary field variable is updated, and the
next field equation is treated in a similar manner. For an ‘‘implicit”
type of staggering, the process can be repeated in an iterative man-
ner, while for an ‘‘explicit” type one moves to the next time step
after one ‘‘pass” through the system. We will employ implicit stag-
gering. Specifically, for the thermo–electro–magneto system under
consideration, consider an abstract setting, whereby one solves for
the electric field, assuming the magnetic and thermal fields are
fixed (L is a time-step counter and K is a staggering-step counter),

A1 ELþ1;K ;HLþ1;K�1; hLþ1;K�1
� �

¼ B1ðELþ1;K�1;HLþ1;K�1; hLþ1;K�1Þ ð3:1Þ

then one solves for the magnetic fields, assuming the electric and
thermal fields fixed,

A2 ELþ1;K ;HLþ1;K ; hLþ1;K�1
� �

¼ B2ðELþ1;K ;HLþ1;K�1; hLþ1;K�1Þ ð3:2Þ

then one solves for the thermal fields, assuming the electric and
magnetic fields fixed,

A3 ELþ1;K ;HLþ1;K ; hLþ1;K
� �

¼ B3ðELþ1;K ;HLþ1;K ; hLþ1;K�1Þ; ð3:3Þ

where the only underlined variable is ‘‘active” at that stage of the
process. Within the staggering (iterative) scheme, implicit time-
stepping methods (with time-step size adaptivity) will be used
throughout the upcoming analysis (described shortly). The process
is driven by minimizing the following normalized errors (for the
three fields) within each time step, which represent the non-dimen-
sional ratios for each field of the iterative error within a time-step
(difference between successive iterations) to the difference in the
converged solution from time-step to time-step; for the electric
field4

-K
E ¼

def kELþ1;K � ELþ1;K�1k
kELþ1;K � ELk

; ð3:4Þ

for the magnetic field

-K
H ¼

def kHLþ1;K � HLþ1;K�1k
kHLþ1;K � HLk

ð3:5Þ

and for the thermodynamic field

-K
h ¼

def khLþ1;K � hLþ1;K�1k
khLþ1;K � hLk

: ð3:6Þ

Thereafter, we select the maximum non-dimensionalized error for
adaptivity

-�;K ¼def max -K
E ;-

K
H;-

K
h

� �
ð3:7Þ

and determine whether the iterations should continue, or the time
steps should be adaptively reduced (or increased if convergence oc-
curs too quickly). The details of this process are discussed shortly.
Generally speaking, if a recursive staggering process is not em-
ployed (an explicit coupling scheme), the staggering error can accu-
mulate rapidly. However, simply employing extremely small time
steps, smaller than needed to control the discretization error, in or-
der to suppress a (nonrecursive) staggering process error, can be
4 The symbol k � k will signify the L2(X)-norm throughout this work.
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computationally inefficient. Therefore, the objective of the next
subsection is to develop a strategy to adaptively adjust, in fact max-
imize, the choice of the time-step size in order to control the
staggering error, while simultaneously staying below a critical
time-step size needed to control the discretization error. An impor-
tant related issue is to simultaneously minimize the computational
effort involved. We now develop a staggering scheme by extending
an approach found in the work of Zohdi et al. [53–56].

Remark. Staggering schemes are widely used in the computa-
tional mechanics literature, dating back, at least, to Zienkiewicz
[47] and Zienkiewicz et al. [48]. For in depth overviews, see the
works of Lewis and Schrefler (Lewis et al. [23] and Lewis and
Schrefler [24]) and a series of works by Schrefler and collaborators:
Schrefler [37], Turska and Schrefler [41], Biano et al. [5] and Wang
and Schrefler [42].
3.1. Spatial discretization of the coupled system

3.1.1. Spatial discretization of the electromagnetic field
Numerically, the components of the curl of functions such as E

and H are approximated by central finite difference stencils of the
form (Fig. 4):

@E
@x

				
x

� Eðxþ DxÞ � Eðx� DxÞ
2Dx

and

@H
@x

				
x

� Hðxþ DxÞ � Hðx� DxÞ
2Dx

; ð3:8Þ

for each of the (x1, x2, x3)-directions, in order to form the terms
needed in rx � E and rx � H. This is a second-order accurate sten-
cil. To illustrate this, consider a Taylor series expansion for an arbi-
trary function A

Aðxþ DxÞ ¼ AðxÞ þ @A
@x

				
x

Dxþ 1
2
@2A
@x2

					
x

ðDxÞ2 þ 1
6
@3A
@x3

					
x

ðDxÞ3 þOðDxÞ4

ð3:9Þ

and

Aðx� DxÞ ¼ AðxÞ � @A
@x

				
x

Dxþ 1
2
@2A
@x2

					
x

ðDxÞ2 � 1
6
@3A
@x3

					
x

ðDxÞ3 þOðDxÞ4:

ð3:10Þ
A(i−1,j,k)

A(i,j+1,k)

A(i,j,k−1)

A(i+1,j,k)

A(i,j,k+1)

A(i,j−1,k)

A(i,j,k)

Fig. 4. A typical three dimensional finite difference stencil for a field A(x, y, z).
Subtracting the two expressions yields

@A
@x

				
x

¼ Aðxþ DxÞ � Aðx� DxÞ
2Dx

þOðDxÞ2: ð3:11Þ
3.1.2. Spatial discretization of the thermal field
Although the discretization of the thermal field follows the

same approach as the electromagnetic field, because it is governed
by a second-order differential equation, the following approxima-
tion is first made

@q
@x

				
x

�
q xþ Dx

2

� �
� q x� Dx

2

� �
Dx

; ð3:12Þ

where (in conjunction with Fourier’s Law)

q xþ Dx
2

� �
� �K xþ Dx

2

� �
hðxþ DxÞ � hðxÞ

Dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
@h
@xjxþDx

2

ð3:13Þ

and

q x� Dx
2

� �
� �K xþ Dx

2

� �
hðxÞ � hðx� DxÞ

Dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
@h
@xjx�Dx

2

; ð3:14Þ

where

K xþ Dx
2

� �
� 1

2
ðKðxþ DxÞ þKðxÞÞ ð3:15Þ

and

K x� Dx
2

� �
� 1

2
ðKðxÞ þKðx� DxÞÞ: ð3:16Þ

These approximations are made for @q1
@x1
; @q2
@x2

and @q3
@x3

, in order to form
the terms needed in rx � q.

3.2. Temporal discretization of the coupled system

3.2.1. Temporal discretization of the electromagnetic fields
We start with a relatively (‘‘lossy”) formulation of Maxwell’s

equations (Faraday’s law and Ampere’s law)

@ðl � HÞ
@t

¼ �rx � E �Ms � r̂ �H ¼def F ð3:17Þ

and

@ð� � EÞ
@t

¼ rx � H � Js � r � E ¼def G: ð3:18Þ

We discretize for time = t + /Dt, and using a trapezoidal ‘‘/-scheme”
(0 6 / 6 1, see Appendix)

ðl � HÞðt þ DtÞ � ðl �HÞðtÞ
Dt

� Fðt þ /DtÞ � /Fðt þ DtÞ þ ð1� /ÞFðtÞ

ð3:19Þ

and

ð� � EÞðt þ DtÞ � ð� � EÞðtÞ
Dt

� Gðt þ /DtÞ � /Gðt þ DtÞ þ ð1� /ÞGðtÞ:

ð3:20Þ

Rearranging, yields

Hðt þ DtÞ � l�1ðt þ DtÞ � ððl �HÞðtÞ þ Dtð/Fðt þ DtÞ þ ð1� /ÞFðtÞÞÞ
ð3:21Þ

and

Eðt þ DtÞ � ��1ðt þ DtÞ � ðð� � EÞðtÞ þ Dtð/Gðt þ DtÞ þ ð1� /ÞGðtÞÞÞ;
ð3:22Þ
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where the previously introduced spatial discretization is applied to
the terms in F and G (rx � H andrx � E). Clearly, other constitutive
laws, for example for the conduction, J ¼ J ðEÞ can easily be han-
dled with the same formulation. Note that the non-linearity can
be far more complicated, and not easily separable, and one must re-
sort to using a Taylor series expansion of the form

DK ¼ f ðEKÞ � f ðEK�1Þ þ @f
@E

				
EK�1
� ðEK � EK�1Þ þ � � � þOðEÞ2 ð3:23Þ

and

BK ¼ gðHKÞ� gðHK�1Þþ @g
@H

				
HK�1
� ðHK �HK�1Þþ �� �þOðHÞ2; ð3:24Þ

to linearize the system. Depending on the type of non-linearity,
there may be slight advantages in arranging the fixed-point itera-
tion in a certain order over another.

Remark. When / = 1, then this approach can be considered to be a
(implicit) Backward Euler scheme, which is very stable (very
dissipative) and OðDtÞ2 locally in time, while if / = 0, the scheme
can be considered as a (explicit) Forward Euler scheme, which is
conditionally stable and OðDtÞ2 locally in time and if / = 0.5, then
the scheme can be considered as a (implicit) Midpoint scheme,
which is marginally stable and bOðDtÞ2 ¼ OðDtÞ3 locally in time.
SOLVE ELECTRO−PROBLEM
FARADAY’S LAW)(MOMENTARILY DECOUPLED 

(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))
3.2.2. Temporal discretization of the thermal field
For the thermal field we write

@h
@t
¼ 1

qC
ð�rx � qþ qzÞ ¼def Y : ð3:25Þ

We discretize for around the time = t + /Dt, yielding

hðt þ DtÞ � hðtÞ þ Dtð/Yðt þ DtÞ þ ð1� /ÞYðtÞÞ; ð3:26Þ

where the previously introduced spatial discretization is applied to
the terms in Y.

3.3. The overall solution scheme

In order to construct a solution, the algorithm is as follows:

� (1) Spatio-temporal discretization: Construct derivative terms
such as
SOLVE MAGNETO−PROBLEM

@EðxÞ
@x

� Eðxþ DxÞ � Eðx� DxÞ
2Dx

; . . . ð3:27Þ

(MOMENTARILY DECOUPLED AMPERE’S LAW)

(MOMENTARILY DECOUPLED FIRST LAW)
SOLVE THERMO−PROBLEM

(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))
and insert into the governing equations: Eqs. (3.21), (3.22),
(3.26). This leads to a system of coupled equations, for each node
((i, j, k) in Fig. 4), which are cast in the following (implicit/recur-
sive) form (which are a recasting of the abstract system (Eqs.
(3.1)–(3.3)))
(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))
Eðt þ DtÞ ¼ F ðEðt þ DtÞ;Hðt þ DtÞ; hðt þ DtÞ; . . .Þ ð3:28Þ
and

STAGGERING−EXPLICIT STAGGERING−IMPLICIT
Hðt þ DtÞ ¼ GðEðt þ DtÞ;Hðt þ DtÞ; hðt þ DtÞ; . . .Þ ð3:29Þ

CHECK ERROR NORM
and
CONVERGED?
hðt þ DtÞ ¼ YðEðt þ DtÞ;Hðt þ DtÞ; hðt þ DtÞ; . . .Þ: ð3:30Þ
GO TO NEXT TIME STEP

NOYES
� (2) System staggering: Compute E-field with H and h fields fixed,
then compute H-field with E and h fields fixed, etc., and iterate
at time interval L + 1, K = 1, 2, . . . for
Fig. 5. Types of coupled staggering solution for the thermo–electro–magneto
system.
ELþ1;K ¼ F ELþ1;K�1;HLþ1;K�1; hLþ1;K�1
� �

ð3:31Þ
and
HLþ1;K ¼ GðELþ1;K ;HLþ1;K�1; hLþ1;K�1Þ ð3:32Þ
and
hLþ1;K ¼ YðELþ1;K ;HLþ1;K ; hLþ1;K�1Þ: ð3:33Þ
Solving each of the above Eqs. (3.31)–(3.33), with the respective
other fields fixed, can be achieved in a variety of ways, for exam-
ple iteratively or by direct (Gaussian-type) solution methods
(Fig. 5). However, in theory, one could even simply perform an
explicit update (no recursion). This is discussed further in the re-
marks that follow.
� (3) Compute error measures: -�;K ¼def max -K

E ;-K
H;-K

h

� �
; i ¼ 1; . . . ;

nodes in the system.
� (4a) If tolerance is met, -*,K

6 Ctol and K 6 Kd, then:
(i) Increment time forward: t = t + Dt,
(ii) Construct new time step: (Dt)new = UK (Dt)old, where

UK ¼
def

Ctol
-�;0

� � 1
pKd

-�;K
-�;0

� � 1
pK

0B@
1CA

(iii)
Select Dt = min((Dt)lim, Dt) and go to (1)
� (4b) If tolerance is not met, -*,K > Ctol and K = Kd, then construct

(refine) new time step: ðDtÞnew ¼def UKðDtÞold
UK ¼def
Ctol
-�;0

� � 1
pKd

-�;K
-�;0
� � 1

pK

0B@
1CA ð3:34Þ
and go to (1). This adaptive time-scaling law (Zohdi et al. [53–56]) is
derived in Appendix A.

At a given time, once the process is complete, then the time is
incremented forward and the process is repeated. The overall goal
is to deliver solutions where the iterative error is controlled and
the temporal discretization accuracy dictates the upper limit on
the time-step size (Dtlim). Clearly, there are various combinations
of solution methods that one can choose from. For example, for



5 Typically, the number of iterations needed to solve the coupled system, if an
iterative scheme is used, increases with the time step size and the value of /.
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the overall field coupling, one may choose implicit or explicit stag-
gering and within the staggering process, either implicit (0 < / 6 1)
or explicit time-stepping (/ = 0), and, in the case of implicit time-
stepping, iterative or direct solvers for Maxwell’s equations and the
First Law of Thermodynamics (Fig. 5).

3.4. Discussion of the numerical scheme

There are a series of observations pertaining to the numerical
scheme.

3.4.1. Comments on the staggering approach
Generally speaking, the solution to the individual field equa-

tions progresses in a node by node fashion whereby, at a node (i,
j, k), for example for the magnetic field calculations, one has

Hðt þ DtÞi;j;k � l�1ðt þ DtÞi;j;k � ððl � HÞðtÞi;j;k
þ Dtð/Fðt þ DtÞ þ ð1� /ÞFðtÞÞi;j;kÞ; ð3:35Þ

where the term on the lefthand side is updated and the terms on
the right are previous iterate (old) values. This entails using the
old values for all finite difference stencils that eventually become
updated only after the algorithm completely ‘‘moves through” the
system, updating values, node by node (no matrices need to be
formed). There are a variety of techniques to accelerate such com-
putations, such as successive over-relaxation, based on the pio-
neering work of Young [46]. For reviews, see Ames [4] or
Axelsson [3]. Note that for the magnetic field calculations (Am-
pere’s Law), the electric field and thermal fields are ‘‘momentarily
frozen”, and are updated only when it is the appropriate field’s
‘‘turn” to be solved in the staggered manner. At the algebraic
equation solution level, after the individual field has been solved,
the entire solution is passed to the next field equation, as de-
scribed in the previous algorithm (Fig. 5). This is a recursive iter-
ative scheme of the Jacobi-type, whereby the updates are made
only after one complete system iteration (as illustrated in the pre-
vious algorithm). The Jacobi method is easier to address theoreti-
cally, while the Gauss–Seidel-type method, which involves
immediately using the most current field values, when they be-
come available, is usually used at the implementation level. It is
important to realize that the Jacobi method is easily parallelizable.
In other words, the calculation for each node is (momentarily)
uncoupled, with the updates only coming at the end of an itera-
tion. Gauss–Seidel, since it requires the most current updates, cou-
ples the nodal calculations immediately. However, these methods
can be combined to create hybrid ‘‘block-partitioned” approaches,
whereby the entire domain is partitioned into subdomains and
within each subdomain a Gauss–Seidel method is applied. In other
words, for a subdomain, the values at all nodes from outside are
initially frozen, as far as calculations involving members of the
group are concerned (‘‘block”-type calculations; see Axelsson
[3]). After each isolated subdomain’s solution (nodal values) has
converged (computed in parallel), then all nodal values are up-
dated, i.e. the most current values become available to all mem-
bers of the grid, and the isolated subdomain calculations are
repeated. Although parallel computations is not the subject of this
work, some comments are also in order. Generally, interprocessor
communication and synchronization is the usual bottleneck to ob-
tain a high-performance parallel algorithm. The parallel speedup
(relative to a sequential implementation), S, can be approximated
by Amdahl’s law (Amdahl [2]), S ¼ 1

1�P , where P is the fraction of
the algorithm that is parallelizable. For example, if 40% of the code
is inherently sequential, then P = 0.6 and S = 2.5. This provides an
upper bound on the utility of adding more processors. A
related expression is ‘‘Gustafson’s law” (Gustafson [13]), S(P) =
P � k(P � 1), where k represents the parts of the algorithm that
are not parallelizable. Amdahl’s law assumes that the problem is
of fixed size and that the sequential part is independent of the
number of processors, however, Gustafson’s law does not either
of these assumptions. Although we do not pursue parallel compu-
tation in the present work, we refer the reader to the works of
Papadrakakis et al. [32–34] for parallel strategies that are directly
applicable to the class of problems of interest, and to Stavroulakis
and Papadrakakis [38] for the state-of-the-art analysis of block-
parallel type calculations.

3.4.2. Comments on time-step adaptivity
Clearly, one should use the previous (converged) time step’s

solution as the starting guess for the next time step to obtain a
‘‘head-start” (HK=0(t + Dt) = H(t)). When selecting a time step,
one must balance accuracy concerns and, simultaneously, stabil-
ity issues.5 Clearly, the smaller the time-step, the more stable the
solution process, however, more time steps means more system
evaluations. One would like to keep the time steps near the (Cou-
rant–Friedrichs–Levy) CFL limit, or slightly below it. The CFL condi-
tion dictates that numerical wave speed of Dx/Dt must be at least
as fast as the physical wave speed (c). The electromagnetic wave
speed is c ¼ 1ffiffiffiffiffiffiffi

�olo

p � 2:997924562� 108 � 1:1 m=s in vacuum
while, in other media it is c ¼ 1ffiffiffiffi

�l
p , where the corresponding dielec-

tric constants are � and l. Thus, since Dx/Dt P c, this leads to the
restriction, Dt 6 Dx

c . Because we are dealing with heterogeneous
media in three dimensions, an ad hoc, somewhat conservative,
restriction is

Dt 6
minðDx1;Dx2;Dx3Þ

cmax
¼def Dt�; ð3:36Þ

where cmax is the fastest wave speed associated with the material
components in the heterogeneous medium. Stability can, of course,
be achieved by using an implicit scheme, which we employ. How-
ever, in many cases, this critical condition (for explicit methods)
still serves as an indicator of poor numerical behavior, even for im-
plicit schemes. For the remainder of the work, we shall refer to the
‘‘CFL number” as

CFL ¼def Dt
cmax

minðDx1;Dx2Dx3Þ

� �
¼def Dt

Dt�
: ð3:37Þ

Although we will not employ explicit time-stepping schemes, we
refer the reader to Kunz and Luebbers [22] and Taflove and Hag-
ness [39] for overviews, in particular on the popular Yee-scheme
(Yee [45]). We remark that a critical issue in the use of explicit
schemes is stability, i.e. that errors at one time step do not grow
in the next time step. We refer the reader to Taflove and Hagness
[39] for a detailed discussion of this topic, and detailed analysis of
the Yee method, which is subject to time-step restrictions due to
stability issues. We remark that, in the present work, since we
shall iterate anyway due to the use of multifield staggering
schemes, implicit methods are preferred for the applications of
interest.

Remark. As the physics changes, the field that is most sensitive
(exhibits the largest amount of relative non-dimensional change)
dictates the time-step size. Because the internal system solvers
within the staggering scheme are also iterative and use the
previously converged solution as their starting value to solve the
system of equations, a field that is relatively insensitive at given
stage of the simulation will converge in a very few internal
iterations (perhaps even one).



SUBSAMPLE

SAMPLE

Fig. 6. With the framing method, a sample is probed with interior subsamples,
within the larger sample, in order to avoid boundary effects that occur from
imposing the uniform fields on the large-sample exterior.
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4. Mesoscale computations

4.1. Sample size selection

Generally, in order to determine �* (for an anisotropic overall
response), one specifies three uniform (spatially constant) linearly
independent loadings (either E or D) on the boundary of a sample
(Fig. 6).6 Each independent loading yields three different averaged
electric field components and hence provides three equations for
the constitutive constants in �*. In order to determine the effective
properties of the sample, one computes nine (actually 6 due to sym-
metry) constitutive constants ��ij in the following relation between
averages (Eq. (1.1) written out)

hD1iX
hD2iX
hD3iX

8><>:
9>=>; ¼

��11 ��12 ��13

��21 ��22 ��23

��31 ��32 ��33

264
375 hE1iX
hE2iX
hE3iX

8><>:
9>=>;: ð4:1Þ

If the effective response is assumed isotropic, then only one test
loading (instead of usually three) is required

�� ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDiX � hDiX
hEiX � hEiX

s
; ð4:2Þ

with a similar relation holding for the magnetic permeability

l� ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBiX � hBiX
hHiX � hHiX

s
: ð4:3Þ

Since we will be dealing with materials comprised of randomly dis-
persed particulate media, we shall assume that the materials have
an overall isotropic response and that Eqs. (4.2) and (4.3) are ade-
quate to describe the effective material. In order to select a suitable
sample that is statistically representative (a RVE), we employ a
‘‘framing” method, whereby the uniform boundary (either E or D)
are applied to the boundary of a sample (Fig. 6), and a subsample
is used for the averaging process. This approach avoids introducing
boundary layer effects into the volumetric averaging. For more de-
tails, see Zohdi et al. [53–56]. An implementation of a ‘‘framing” ap-
proach is as follows:

� Step (1): Generate a sample with a certain number of particles in
its interior to meet the volume fraction under investigation.
� Step (2): For the effective property calculation (averaging),

select a subsample (‘‘a sub-box”, Fig. 6) in the interior (to avoid
boundary layer effects that arise from the imposition of uniform
boundary conditions).
� Step (3): Repeat Steps (1) and (2) for different random realiza-

tions for a given sample size, and average the resulting effective
properties to determine a mean value.
6 In the time-transient case, the electrical and magnetic fields are coupled, and
magnetic boundary data must also be supplied (either H or B).
� Step (4): Repeat Steps (1)–(4) for a larger sample.
� Step (5): Continue the process (Steps (1)–(4)) until the effective

property ceases to change to within an acceptable tolerance.

For a more in depth discussion on size-effect issues, see the
works of Zohdi et al. [49–56].

4.2. A model problem

As a model problem, we consider a heterogeneous material
combination comprised of a group of particles in a binding matrix.
We generated a group of Np randomly dispersed spherical particles,
of equal size, embedded in a cubical domain of dimensions,
D � D � D. The particle size was determined by a particle/sample

size ratio, which was defined via a subvolume size V ¼def D�D�D
Np

.

The non-dimensional ratio between the radius (b) and the subvo-

lume was denoted by L ¼def b

V
1
3
. The volume fraction occupied by

the particles consequently can be written as vp ¼def 4pL3

3 . Thus, the to-
tal volume occupied by the particles denoted f, can be written as
f = vpNpV. We used Np = 100 particles (Fig. 7). This sample size
was arrived at by successively enlarging sample until there were
no significant changes in the overall system response for further
enlargements. The classical random sequential addition algorithm
was used to place nonoverlapping particles randomly into the do-
main of interest (RSA; Widom [43]). This algorithm was adequate
for the volume fraction range of interest. However, if higher vol-
ume fractions are desired, more sophisticated algorithms, such as
the well-known, equilibrium-based, Metropolis algorithm can be
used. For even higher volume fractions (particle packing), a rela-
tively recent class of efficient methods, based on simultaneous par-
ticle flow and growth, has been developed by Torquato and
coworkers (Torquato [40], Kansaal et al. [21] and Donev et al. [9–
11]).

4.3. System parameters

The following parameters were used:

� A sample size of D � D � D, with D = 0.00005 m, a subsample
having a length-scale of 0.80 � D.
� An electric field on the boundary (linearly-growing),

E ¼ ð109;109;109Þ t
T, initial conditions, E(t = 0) = (0, 0, 0).

� A magnetic field on the boundary (linearly-growing),
H ¼ ð109;109;109Þ

ffiffiffiffi
lo
�o

q
t
T, initial conditions, H = (0, 0, 0).

� A time-stepping factor / = 0.5 (mid-point rule).
� A (nominal) length scale of the particles of f = 0.325, with a

±10% variation of the resulting radius given afterwards.
� A temperature on the boundary, h = 303.13 K, and initial condi-

tions, h = 303.13 K, along with a reference temperature of
h0 = 303.13 K.
� A relative permittivity for the particles of �2r = 50.
� A relative permittivity for the matrix of �1r = 2.
� A relative permeability for the particles of l2r = 5.
� A relative permeability for the matrix of l1r = 1.
� An electrical conductivity for the particles of r2 = 1.
� An electrical conductivity for the matrix of r1 = 1.
� A density for the particles of q2 = 2000.
� A density of the matrix of q1 = 1000.
� A thermal conductivity for the particles of K2 ¼ 200.
� A thermal conductivity for the matrix of K1 ¼ 100.
� A heat capacity for the particles of C2 = 2000.
� A heat capacity for the matrix of C1 = 1000.
� An absorption for the particles of a2 = 1.
� An absorption for the matrix of a1 = 1.



Fig. 7. Left: The morphology of the test sample’s numerically-resolved microstructure, with a 101 � 101 � 101 mesh which has 6,181,806 electromagnetic degrees of freedom.
Approximately beyond the 61/81 mesh-density level there were no perceivable changes in the results. Right: the normalized temperature h

ho
.
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� A (inner loop) solver tolerance, tol = 10�6 and with the number
of desired iterations per time step set to Kd = 5, along with a
coupling/staggering tolerance of Ctol = 10�6.

Remark 4. All of the Sigmoid function constants in Eqs. (1.5)–(1.9)
were set to ±1;

� for the permittivity:
(a) KE1 ¼ 1,
(b) aE1 = 1,
(c) KE2 ¼ 1,
(d) aE2 = 1,
� for the permeability:

(a) KH1 ¼ 1,
(b) aH1 = �1,
(c) KH2 ¼ 1,
(d) aH2 = �1,
� for electrical conductivity:

(a) KS1 ¼ 1,
(b) aS1 = �1,
(c) KS2 ¼ 1,
(d) aS2 = �1.

Note that asymptotically, for the material behavior, as h ?1
and as kEk? 1,
Eðh� hR;E � ERÞ ! ð1þKE1 þKE2Þ ð4:4Þ
and
rðhR;ERÞ ! 1; ð4:5Þ
while as h ?1 and as kHk?1,
Hðh� hR;H � HRÞ ! 1: ð4:6Þ
The reference fields in the Sigmoid functions, ER and HR, were both
set to zero in the calculations.

4.4. Numerical results

For the 100 particle sample, the meshes were repeatedly refined
in the following sequential manner:

1. Mesh # 1: a 41 � 41 � 41 mesh7 which has 413,526 electromag-
netic degrees of freedom and 68,921 thermodynamic degrees of free-
dom for a total of 482,447 degrees of freedom.
7 A 41 � 41 � 41 arises from having a cubical mesh with 20 nodes from the
centerline line/plane of symmetry and one node in the middle.
2. Mesh # 2: a 61 � 61 � 61 mesh which has 1,361,886 electromag-
netic degrees of freedom and 226,981 thermodynamic degrees of
freedom for a total of 1,588,867 degrees of freedom.

3. Mesh # 3: a 81 � 81 � 81 mesh which has 3,188,646 electromag-
netic degrees of freedom and 531,441 thermodynamic degrees of
freedom for a total of 3,720,087 degrees of freedom.

4. Mesh # 4: a 101 � 101 � 101 mesh which has 6,181,806 electro-
magnetic degrees of freedom and 1,030,301 thermodynamic
degrees of freedom for a total of 7,212,107 degrees of freedom.

Approximately beyond the 61/81-level there were no notice-
able changes in the results. All numerical results are shown in Figs. 7–
17. At the length-scales of interest, it is questionable whether the
ideas of a sharp material interface are justified. Accordingly, we
simulated the system with and without Laplacian smoothing,
whereby one smooths the material data by post-processing the
material data, node by node, to produce a smoother material rep-
resentation, for example, for the electric permittivity, �̂ (using
the stencil in Fig. 4)

r2
x� ¼ 0) �̂i;j;k

¼ 1
6
�iþ1;j;k þ �i�1;j;k þ �i;jþ1;k þ �i;j�1;k þ �i;j;kþ1 þ �i;j;k�1
� �

: ð4:7Þ

The same was done for the permeability by enforcing r2
xl ¼ 0, as

well as other material data. The simulations were run with and
without data smoothing, with the results being negligibly different
for sufficiently fine meshes (Fig. 7).

4.5. Observations

The effective properties for both thermally-sensitive and ther-
mally-insensitive are shown in Figs. 7–17. Both the thermally-
insensitive and thermally-sensitive cases produce effective
responses which eventually fall within the bounds (using material
parameters with all Sigmoid constants, the K’s, set to zero). The
thermally-sensitive case exhibits large overshoot, due to the
changing properties, however, it eventually converges (saturates)
to a steady-state value.

The portion of the overall field carried by each phase can be an
important quantity for a material design. The ‘‘load share” of the
various fields can be post processed from a direct simulation.
Figs. 11–15 illustrate various overall field quantities, such as the
overall electric field: hEiX ¼ 1

jXj
R

X EdX, the electric field carried by
phase 1 (the matrix): hEiX1

¼ 1
jX1 j
R

X1
EdX and the electric field



Fig. 8. Left: The normalized electric field, E
kEok. Right: The normalized electric field flux, D

�okEok:

Fig. 9. Left: The normalized magnetic field, H
kHok. Right: The normalized magnetic field flux, B

lokHok.
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carried by phase 2 (the particles): hEiX2
¼ 1
jX2 j
R

X2
EdX, as well as the

other quantities such as D, H and B. Note that

hEiX ¼
1
jXj

Z
X1

EdXþ
Z

X2

EdX
� �

¼ v�1hEiX1
þ v�2hEiX2

ð4:8Þ

and

hDiX ¼
1
jXj

Z
X1

DdXþ
Z

X2

DdX
� �

¼ v�1hDiX1
þ v�2hDiX2

: ð4:9Þ
As illustrated in Fig. 17, we note that the time steps were initially
set to be the CFL limit CFL ¼ 1, but had to be refined below that level
for the thermally-sensitive case. Unrefinements also took place,
when allowable (if below the upper time-step limit). The coupling
tolerance was set to Ctol = 10�6 in the preceding calculations. Only
the thermally-sensitive problems required time-step adaptivity (be-
low the CFL limit) to control the coupling error. However, if the Ctol

was made coarser, for example to Ctol = 10�5 and Ctol = 10�4, etc.,
eventually the CFL-time step would have been adequate for the
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thermally-sensitive case, as for the thermally-insensitive case.
Clearly, these results are dependent on the material parameters se-
lected. It is important to stress that it is virtually impossible to deter-
mine a priori whether the initial time step is adequate to meet a
tolerance and whether adaptivity is needed. Obviously, we can use
this scheme for any (trapezoidal) value of 0 6 / 6 1. Time-step size
adaptivity is important, since the solution can dramatically change
over the course of time, possibly requiring quite different time-step
sizes to control the iterative (staggering) error. However, to maintain
the accuracy of the time-stepping scheme, one must respect an
upper bound dictated by the discretization error, i.e., Dt 6 Dtlim

(and the CFL condition). As stated before, classical solution methods
require OðN3Þ operations, whereas iterative schemes, such as the
one presented, typically require order Nq, where 1 6 q 6 2. For de-
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tails see Axelsson [3]. Also, such solvers are highly advantageous
since solutions to previous time steps can be used as the first guess
to accelerate the solution procedure.
5. Stress- and chemically-induced damage

The generation of heat and stress (due to Joule heating and elec-
tromagnetically-induced body forces) can initiate forms of damage
that are both mechanically-induced and chemically-induced.
Accordingly, we now formulate extensions, involving stress- and
chemically-induced degradation by enlarging the formulation to
multifield systems to include simultaneous time-transient solution
of: (1) Maxwell’s equations, (2) the First Law of Thermodynamics, (3)
the balance of linear momentum and (4) reaction–diffusion laws.

Remark 1. We consider regimes where infinitesimal deformations
are appropriate. Consistent with the infinitesimal deformation
approximation, where X are referential coordinates, x are current

coordinates and rxð�Þ � rXð�Þ @ð�Þ
@x �

@ð�Þ
@X

� �
. The mechanical displace-

ment is given by u = x � X, and time derivatives given by
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_ðÞ ¼ dðÞ
dt
¼ @ðÞ
@t

				
X

þrXðÞ �
dX
dt|{z}
¼0

¼ @ðÞ
@t

				
X

: ð5:1Þ

In addition to simplification some of the governing equations per-
taining to the system thermodynamics, linear momentum and
chemical reactions, the curl equations in Maxwell’s equations effec-
tively becomes rx � (�) �rX � (�).
Remark 2. One may compute the induced mechanical loads by
computing f ¼ PE þ Jtot � B, where P is the charge per unit vol-
ume, computed from the divergence form of Faraday’s law,
rx � D ¼ P, for use in an electromagnetic stress analysis, where

rx � T þ f ¼ q
d2u

dt2 ; ð5:2Þ

T being the Cauchy stress.
Remark 3. Note, for a deforming medium, in the Faraday’s law, the
term r � E becomes r � (E + v � B).
5.1. Damage evolution

Within the framework of infinitesimal deformations, we consider
a mechanical isotropic damage constitutive law given by

T ¼ aE0 : ð�� bÞ; ð5:3Þ

where T is the Cauchy stress, governed by a balance of linear
momentum8

rx � T þ f ¼ q€u ð5:4Þ

which under infinitesimal deformation framework becomes

rX � T þ f ¼ qo
@2u
@t2 ; ð5:5Þ

or, explicitly,

rX � ðKE0 : ðe� bÞÞ þ f ¼ qo
@2u
@t2 ð5:6Þ

with infinitesimal strains given by e ¼ 1
2 ðrXuþ ðrXuÞTÞ and ther-

mal strains given by b ¼ eh ¼
def

c � ðh� h0Þ1. Here, the (isotropic) dam-
aged elasticity tensor is E ¼ aE0, where E0 represents the ‘‘virgin”
isotropic undamaged material, 0 6K 6 1 is the scalar continuity
8 The body force represents the electromagnetic coupling term, f ¼ PE þ Jtot � B.
(isotropic damage) parameter (Kachanov [20]), K(t = 0) = 1 indi-
cates the initial undamaged state and K ? 0 indicates a completely
damaged state. The damage arising from mechanical and chemical
sources is modeled as being governed by evolution over-stress func-
tions of the form (0 < K 6 1)

_K ¼ a1j _cj|ffl{zffl}
chemistry

þ a2H
jtrT=3j
jtrTcrit=3j � 1
� �

jtrT=3j
jtrTcrit=3j � 1
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dilatation

0BBB@

þ a3H
kT 0k
kT 0critk

� 1
� �

kT 0k
kT 0critk

� 1
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deviator

1CCCAK; ð5:7Þ

where the normalized concentration of the solute is c, given in
molecules per unit volume, where T 0crit ¼

def k1
T 0

kT 0k ;
trTcrit

3 ¼def k2, k1 and
k2 being material constants, T 0 ¼ T � trT

3 1. H(�) is the Heaviside
function that is equal to zero when the argument is negative
and is equal to unity otherwise. The material parameters (rate
constants) a1–a3 and k1 and k2 are spatially variable (different
for each phase). For further details on these types of phenomeno-
logical (damage) formulations, the interested reader is referred to
the seminal work of Kachanov [20]. Clearly, further evolution
laws can be written for other material property changes, such
as the thermal conductivity and dielectric properties, although
only changes in the mechanical property E are considered during
the formulations to follow.9

5.2. Modification of the First Law of Thermodynamics

For a referential formulation of the First Law of Thermodynam-
ics, we make the following infinitesimal strain approximation, for
the stored energy

qow ¼W � 1
2
ðe� bÞ : E : ðe� bÞ þ qoCh; ð5:8Þ

which implies

qo _w ¼ _W ¼ 1
2
ðe� bÞ : _E : ðe� bÞ þ ð _e� _bÞ : E

: ðe� bÞ þ qoC _h; ð5:9Þ
9 In the case of material isotropy, E : � ¼ ktr�þ 2l�, where k is the Lame parameter
and l is the shear modulus.
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and thus the first law becomes

qoC _h ¼ T : _b� 1
2
ðe� bÞ : _E : ðe� bÞ þ rX � ðK � rXhÞ þ qoz; ð5:10Þ

where Fourier’s law, q ¼ �K � rXh, has been employed.

Remark. The chemical production of energy at a point is modeled
as being related to the change in the rate of reaction, qoz ¼ gj _cj,
which is discussed in detail in the next section, where g is a
spatially variable material parameter. The parameter g is positive
for exothermic reactions and negative for endothermic reactions.
5.3. Solid-state diffusion–reaction

The mass balance for a small diffusing species, denoted by the
normalized concentration of the solute c (molecules per unit vol-
ume), in an arbitrary subvolume of material contained within X,
denoted x, consists of a storage term ð _cÞ, a reaction term (_s), and
an inward normal flux term (�qc � n), leading toZ

x
ð _c þ _sÞdx ¼ �

Z
@x

qc � nda: ð5:11Þ

It is a classical stoichiometrically inexact approximation to assume
that the diffusing species reacts (is created or destroyed) in a man-
ner such that the rate of production of the reactant (s) is directly
proportional to the concentration of solute (c) itself and the rate
of change of the solute (c) species,
_s ¼ s1c þ s2 _c: ð5:12Þ

Here, s1 ¼ r1e�
Q1
Rh and s2 ¼ r2e�

Q2
Rh , where r1 and r2 are rate constants,

Q1 and Q2 are activation energies per mole of diffusive species, R is
the universal gas constant and h is the temperature in degrees Kel-
vin. Upon substitution of these relations into the conservation law
for the diffusing species, and after using the divergence theorem,
since the volume x is arbitrary, one has a Fickian diffusion–reaction
model in strong form, assuming a Fickian-type law, qc ¼ �D � rXc

_c ¼ rX � ðD � rXcÞ � s1c � s2 _c ) _cð1þ s2Þ
¼ rX � ðD � rXcÞ � s1c; ð5:13Þ

where, as before, _ðÞ ¼ @ðÞ
@t jX . When r1 > 0, the diffusing species is de-

stroyed as it reacts, while r1 < 0 indicates that the diffusing species
is created as it reacts, i.e. an autocatalytic or ‘‘chain” reaction occurs.
Also, depending on the sign of r2, effectively the process will have an
accelerated or decelerated diffusivity as well as accelerated or decel-
erated reactivity. In Eq. (5.13), the familiar Arrhenius form D ¼ D0e�

U
Rh

has been used, where D0 is the diffusivity tensor at a reference tem-
perature, U is the activation energy per mole of diffusive species.

Remark 1. It is sometimes observed that, in regions of relatively
high positive triaxial stress, the diffusion is accelerated, while in
regions of high negative triaxial stress, diffusion is decelerated.
Diffusion models with explicit pressure dependency will not be
considered, however, we remark that a particularly simple consti-
tutive model to incorporate stress-dependency phenomena is
given by a pseudo-Fickian/Arrhenius law, qc ¼ �D0e

�UðTÞ
Rh � rc, moti-

vated by thermodynamical arguments found in the classical works
of Flynn [12] or Crank [6].10
Remark 2. It is important to note that instabilities can be induced
by diffusion, i.e. a coupled mechano-chemical system can be stable
when no diffusion is present and unstable in the presence of diffu-
10 An additive split for stress dependency of the form UðTÞ ¼ U0 þ eUðpÞ, where U0 is
a stress-independent reference activation energy and p ¼ trT

3 is the pressure, has been
given in Zohdi [57–59] for certain applications.
sion. An indepth mathematical analysis of such effects has been
conducted by Markenscoff [25–27].
5.4. Discretization of the mechanical and concentration fields

5.4.1. Mechanical field
For the mechanical field (infinitesimal deformation formula-

tion) we write (v ¼ _u is the velocity)

dv
dt
¼ @v
@t
¼ 1

qo
rX � T þ fð Þ ¼def L: ð5:14Þ

We discretize for time = t + /Dt, and using a trapezoidal ‘‘/-scheme”
(0 6 / 6 1, see Appendix)

vðt þ DtÞ � vðtÞ
Dt

� Lðt þ /DtÞ � /Lðt þ DtÞ þ ð1� /ÞLðtÞ: ð5:15Þ

Rearranging, yields

vðt þ DtÞ � vðtÞ þ Dtð/Lðt þ DtÞ þ ð1� /ÞLðtÞÞ; ð5:16Þ

where the previously introduced spatial discretization is applied to
the terms in L (rx � T). Since this is a second-order system, the pro-
cedure is then repeated to determine the displacement field u (see
Appendix D).

Remark. As in our treatment of Maxwell’s equations, finite
difference stencils are used (with additional mixed derivatives),
and the details are given in Appendix C.
5.4.2. Chemical field
For the concentration field we write

@c
@t
¼ 1

1þ s2
ð�rX � qc � s2cÞ ¼def Z: ð5:17Þ

We discretize for around the time = t + /Dt, yielding

cðt þ DtÞ � cðtÞ þ Dtð/Zðt þ DtÞ þ ð1� /ÞZðtÞÞ; ð5:18Þ

where the previously introduced spatial discretization is applied to
the terms in qc.

5.5. Extended numerics: staggering for electro–magneto–thermo–
mechano–chemo systems

Extending the previous electro–magneto–thermo staggering
scheme to include mechanical and chemical effects, one computes
the E-field with H, h, u and c fields fixed, then computes H-field
with E, h, u and c fields fixed, etc., and iterates at time interval
L + 1, K = 1, 2, . . . for (written directly in iterative implicit form)

ELþ1;K ¼ F ELþ1;K�1;HLþ1;K�1; hLþ1:K�1;uLþ1:K�1; cLþ1�K�1
� �

ð5:19Þ

and

HLþ1;K ¼ G ELþ1;K ;HLþ1;K�1; hLþ1�K�1;uLþ1:K�1; cLþ1�K�1
� �

ð5:20Þ

and

hLþ1;K ¼ Y ELþ1;K ;HLþ1;K ; hLþ1�K�1;uLþ1�K�1; cLþ1�K�1
� �

ð5:21Þ

and

uLþ1;K ¼ L ELþ1;K ;HLþ1;K ; hLþ1:K ;uLþ1�K�1; cLþ1�K�1
� �

ð5:22Þ

and

cLþ1;K ¼ C ELþ1;K ;HLþ1;K ; hLþ1�K ;uLþ1�K ; cLþ1�K�1
� �

; ð5:23Þ
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where the only underlined variable is ‘‘active” at that stage of the
process. One then compute error measures: -�;K ¼def max
-K

E ;-K
H;-K

h ;-K
u ;-K

c

� �
; i ¼ 1; . . . ;nodes in the system, where, in addi-

tion to the previously introduced non-dimensional errors for the
electric, magnetic and thermal fields, we define, for the
displacement

-K
u ¼

def kuLþ1;K � uLþ1;K�1k
kuLþ1;K � uLk ð5:24Þ

and for the concentration

-K
c ¼

def kcLþ1;K � cLþ1;K�1k
kcLþ1;K � cLk : ð5:25Þ

Thereafter, we select the maximum error for adaptivity

-�;K ¼def max -K
E ;-

K
H;-

K
h ;-

K
u ;-

K
c

� �
ð5:26Þ

and proceed as introduced earlier for the electro–magneto–thermo
scheme, with the modified flowchart shown in Fig. 18.

Remark 1. An electro–magneto–thermo–mechano–chemo
numerical example is provided in Appendix E.
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CONVERGED?
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UPDATE DAMAGE VARIABLE
(MOMENTARILY DECOUPLED)

Fig. 18. Types of coupled staggering solution for the thermo–electro–magneto–
mechano–chemo system.
Remark 2. Because the temperatures can become quite high (as
seen in Figs. 7–17), especially without a cooling mechanism, one
may wish to include phase transformations by considering four
cases:

� No melting: If h(t) < hm and h(t + Dt) < hm, then C(h) = C0, where
C0 is the solid heat capacity.
� Melting: If h(t) < hm and h(t + Dt) P hm, then CðhÞ ¼ Co þ DHS!L

m
Dhm

,
where DHS!L

m is the latent heat of melting. This has the effect
of enforcing a constant temperature (or absorbing the latent
heat), where Dhm is small and can be thought of as a ‘‘band-
width” for melting.
� Melted: If h(t) P hm and h(t + Dt) P hm, then C(h) = Cm, where Cm

is the heat capacity of the melted material.
� Solidification: If h(t) P hm and h(t + Dt) < hm, then

CðhÞ ¼ Cm þ DHL!S
m

Dhm
, where DHL!S

m is the latent heat of
solidification.

This is relatively straightforward to include within the stagger-
ing framework.
6. Summary

The overall goal was to deliver solutions where the iterative
staggering (incomplete coupling) error is controlled and the tem-
poral discretization accuracy dictates the upper limits on the
time-step size (Dtlim). Generally speaking, the staggering error,
which is a function of the time-step size, is time-dependent and
can become stronger, weaker, or possibly oscillatory, is extremely
difficult to ascertain a priori as a function of the time-step size.
Therefore, to circumvent this problem, the presented adaptive
staggering strategy was developed to provide accurate solutions
by iteratively adjusting the time steps. Specifically, a sufficient con-
dition for the convergence of the presented fixed-point scheme
was that the spectral radius (contraction constant of the coupled
operator), which depends on the time-step size, must be less than
unity. This observation was used to adaptively control the time-
step sizes, while simultaneously controlling the coupled operator’s
spectral radius, in order to deliver solutions below an error toler-
ance within a prespecified number of desired iterations. This recur-
sive staggering error control can allow for substantial reduction of
computational effort by the adaptive use of large time steps, when
possible. Furthermore, such a recursive process has a reduced sen-
sitivity (relative to an explicit staggering approach) to the order in
which the individual equations are solved, since it is self-
correcting.

Appendix A. Temporally-adaptive iterative methods

Implicit time-stepping methods, with time-step size adaptivity,
built on approaches found in Zohdi [53–56], were used throughout
the analysis in the body of the work. In order to introduce basic
concepts, we consider a first-order differential equation

M _U ¼ FðUÞ; ð8:1Þ

which, after being discretized using a trapezoidal ‘‘/-method”
(0 6 / 6 1)

ULþ1 ¼ UL þ Dt
M
ð/FðULþ1Þ þ ð1� /ÞFðULÞÞ: ð8:2Þ

A straightforward iterative scheme can be written as

ULþ1;K ¼ GðULþ1;K�1Þ þR; ð8:3Þ

where R is a remainder term that does not depend on the solution,
i.e. R – RðULþ1Þ, and K = 1, 2, 3, . . . is the index of iteration within
time step L + 1. The convergence of such a scheme is dependent
on the behavior of G. Namely, a sufficient condition for convergence



13 At the implementation level, since the exact solution is unknown, the following
relative error term is used, -Lþ1;K ¼def ULþ1;K � ULþ1;K�1.

14 A Gauss–Seidel-type approach would involve using the most current iterate.
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is that G is a contraction mapping for all UL+1,K, K = 1, 2, 3, . . . In order
to investigate this further, we define the iteration error as

-Lþ1;K ¼def ULþ1;K � ULþ1: ð8:4Þ

A necessary restriction for convergence is iterative self consistency,
i.e. the ‘‘exact” (discretized) solution must be represented by the
scheme

GðULþ1Þ þR ¼ ULþ1: ð8:5Þ

Enforcing this restriction, a sufficient condition for convergence is
the existence of a contraction mapping

-Lþ1;K ¼ kULþ1;K � ULþ1k ¼ kGðULþ1;K�1Þ � GðULþ1Þk; ð8:6Þ
6 gLþ1;KkULþ1;K�1 � ULþ1k; ð8:7Þ

where, if 0 6 gL+1,K < 1 for each iteration K, then -L+1,K ? 0 for any
arbitrary starting value UL+1,K=0, as K ?1. This type of contraction
condition is sufficient, but not necessary, for convergence. Inserting
these approximations into M _U ¼ FðUÞ leads to

ULþ1;K � Dt
M

/FðULþ1Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
GðULþ1;K�1Þ

þ Dt
M
ð1� /ÞFðULÞ þ UL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R

; ð8:8Þ

whose contraction constant is scaled by g / /Dt
M

. Therefore, we see
that the contraction constant g is (1) directly dependent on the
strength of the interaction forces, (2) inversely proportional to M

and (3) directly proportional to /Dt (at time = t). Therefore, if con-
vergence is slow within a time step, the time-step size, which is
adjustable, can be reduced by an appropriate amount to increase
the rate of convergence. Decreasing the time-step size improves
the convergence, however, we want to simultaneously maximize
the time-step sizes to decrease overall computing time, while still
meeting an error tolerance on the numerical solution’s accuracy.
In order to achieve this goal, we follow an approach found in Zohdi
[53–56] originally developed for continuum thermo-chemical mul-
tifield problems in which one first approximates

gLþ1;K � SðDtÞp ð8:9Þ

(S is a constant) and secondly one assumes the error within an iter-
ation to behave according to

ðSðDtÞpÞK-Lþ1;0 ¼ -Lþ1;K ; ð8:10Þ

K = 1,2, . . ., where -L+1,0 is the initial norm of the iterative error and
S is intrinsic to the system.11 Our goal is to meet an error tolerance
in exactly a preset number of iterations. To this end, one writes

S Dttolð Þp
� �Kd-Lþ1;0 ¼ Ctol; ð8:11Þ

where Ctol is a (coupling) tolerance and where Kd is the number of
desired iterations.12 If the error tolerance is not met in the desired
number of iterations, the contraction constant gL+1,K is too large.
Accordingly, one can solve for a new smaller step size, under the
assumption that S is constant,

Dttol ¼ Dt

Ctol
-Lþ1;0

� � 1
pKd

-Lþ1;K

-Lþ1;0

� � 1
pK

0B@
1CA: ð8:12Þ

The assumption that S is constant is not critical, since the time
steps are to be recursively refined and unrefined throughout
the simulation. Clearly, the expression in Eq. (8.12) can also be
11 For the class of problems under consideration, due to the linear dependency on
Dt, p � 1.

12 Typically, Kd is chosen to be between five to 10 iterations.
used for time-step enlargement, if convergence is met in less
than Kd iterations.13

Appendix B. An example of staggering-scheme/time-step
convergence

For the class of coupled systems considered in this work the
coupled operator’s spectral radius (largest eigenvalue) controls
the convergence (within a time step) of this type of method, and
is directly dependent on the time-step discretization size, Dt. We
consider a simple example which illustrates the essential concepts.
Accordingly, consider the coupling of two first-order (ordinary dif-
ferential equations) equations

a _U1 þ cU2 ¼ F1;

b _U2 þ dU1 ¼ F2:
ð9:1Þ

When discretized in time, for example with a trapeziodal /-method
(0 6 / 6 1) scheme, we obtain

ULþ1
1 ¼ UL

1 þ Dt
a / FLþ1

1 � cULþ1
2

� �
þ ð1� /Þ FL

1 � UL
2

� �� �
;

ULþ1
2 ¼ UL

2 þ Dt
b / FLþ1

2 � dULþ1
1

� �
þ ð1� /Þ FL

2 � UL
1

� �� � ð9:2Þ

which leads to the following coupled system:

1 /Dtc
a

/Dtd
b 1

" #
ULþ1

1

ULþ1
2

( )
¼

UL
1 þ

Dt
a

/FLþ1
1 þ ð1� /Þ FL

1 � cUL
2

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼def c1

UL
2 þ

Dt
b

/FLþ1
2 þ ð1� /Þ FL

2 � dUL
1

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼def c2

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
:

ð9:3Þ

Considering a recursive staggering scheme of Jacobi-type, where the
updates are made only after one complete iteration, considered
here only for algebraic simplicity, one has the following split14

0 /Dtc
a

/Dtd
b 0

" #
ULþ1

1

ULþ1
2

( )
þ

1 0
0 1

� �
ULþ1

1

ULþ1
2

( )
¼

c1

c2

 �
ð9:4Þ

and rearranging for iterative solution

�
0 /Dtc

a
/Dtd

b 0

" #
ULþ1;K

1

ULþ1;K
2

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GðULþ1;K Þ

þ
c1

c2

 �
|fflfflffl{zfflfflffl}

R

¼
ULþ1

1

ULþ1
2

( )
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ULþ1;K

ð9:5Þ

The eigenvalues of G are

k1;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/DtÞ2cd

ab

s
: ð9:6Þ

One sees that the convergence of the staggering scheme is directly
related (linearly in this case) to the size of the time step by setting
jk1,2j < 1, we obtain

Dt <
1
/

ffiffiffiffiffiffi
ab
cd

r
: ð9:7Þ
Typically, under very general conditions, if the Jacobi method converges, the Gauss–
Seidel method converges at a faster rate, while if the Jacobi method diverges, the
Gauss–Seidel method diverges at a faster rate. For example, see Ames [4] for details.
The Jacobi method is easier to address theoretically, thus it is used for proof of
convergence, and the Gauss–Seidel method at the implementation level.
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Clearly, the number of iterations increase with /; the least num-
ber of iterations (zero) being when an explicit Euler method is
used, and the largest number of iterations being when an implicit
Euler method (/ = 1) is used. As pointed out in Zohdi [53], the
time step induced restriction for convergence matches the radius
of analyticity of a Taylor series expansion of the solution around
time t.

Remark. The term
ffiffiffiffi
cd
ab

q
appears in the exact solution which

contains exponentials of the form Ae
ffiffiffi
cd
ab

p
t that dictate the rate of

growth of the solution. Thus, the time step dictated by Eq. (9.7)
must be small enough to ‘‘compensate” for this growth.
Appendix C. Spatial finite difference stencils

The following approximations are used (Fig. 19):

� For the first derivative of a primal variable u at (x1, x2, x3):
3

1

2

Fig. 19.
z)), whe
@u
@x1
� uðx1 þ Dx1; x2; x3Þ � uðx1 � Dx1; x2; x3Þ

2Dx1
: ð10:1Þ
� For the derivative of a flux at (x1, x2, x3):
@

@x1
A
@u
@x1

� �
�

A @u
@x1

� �			
x1þ

Dx1
2 ;x2 ;x3

� A @u
@x1

� �			
x1�

Dx1
2 ;x2 ;x3

Dx1

¼ 1
Dx1

A x1þ
Dx1

2
;x2;x3

� ��
� uðx1þDx1Þ;x2;x3�uðx1;x2;x3Þ

Dx1

� �
�A x1�

Dx1

2
;x2;x3

� �
� uðx1;x2;x3Þ�uðx1�Dx1;x2;x3Þ

Dx1

� ��
: ð10:2Þ
� For the cross-derivative of a flux at (x1, x2):
@

@x2
A
@u
@x1

� �
� @

@x2
Aðx1;x2;x3Þ

uðx1þDx1;x2;x3Þ�uðx1�Dx1;x2;x3Þ
2Dx1

� �� �
� 1

4Dx1Dx2
ðAðx1;x2þDx2;x3Þðuðx1þDx1;x2þDx2;x3Þ

�uðx1�Dx1;x2þDx2;x3ÞÞ�Aðx1;x2�Dx2;x3Þ
�ðuðx1þDx1;x2�Dx2;x3Þ�uðx1�Dx1;x2�Dx2;x3ÞÞÞ;

ð10:3Þ
0
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The various stencils in ‘‘computational molecule” form (centered at (x, y,
re: (1) @u

@x, (2) @
@x A @u

@x

� �
and (3) @

@y A @u
@x

� �
.

where
A x1 þ
Dx1

2
; x2; x3

� �
� 1

2
Aðx1 þ Dx1; x2; x3Þ þ Aðx1; x2; x3Þð Þ

ð10:4Þ
and
A x1 �
Dx1

2
; x2; x3

� �
� 1

2
ðAðx1; x2; x3Þ þ Aðx1 � Dx1; x2; x3ÞÞ:

ð10:5Þ
Appendix D. Temporally-second-order equations

D.1. Second-order equations

In order to clearly explain the time-stepping scheme, we first
start with the dynamics of a particle. The equation of motion is gi-
ven by

m _v ¼ W; ð11:1Þ

where W is the total force provided from interactions with the
external environment. Expanding the velocity in a Taylor series
about t + /Dt we obtain

vðt þ DtÞ ¼ vðt þ /DtÞ þ dv
dt

				
tþ/Dt

ð1� /ÞDt

þ 1
2

d2v
dt2

					
tþ/Dt

ð1� /Þ2ðDtÞ2 þOðDtÞ3 ð11:2Þ

and

vðtÞ ¼ vðt þ /DtÞ � dv
dt

				
tþ/Dt

/Dt þ 1
2

d2v
dt2

					
tþ/Dt

/2ðDtÞ2 þOðDtÞ3:

ð11:3Þ

Subtracting the two expressions yields

dv
dt

				
tþ/Dt

¼ vðt þ DtÞ � vðtÞ
Dt

þ ÔðDtÞ; ð11:4Þ

where ÔðDtÞ ¼ OðDtÞ2, when / ¼ 1
2. Thus, inserting this into the

equations of equilibrium yields

vðt þ DtÞ ¼ vðtÞ þ Dt
m

Wðt þ /DtÞ þ ÔðDtÞ2: ð11:5Þ

Note that adding a weighted sum of Eqs. (11.2) and (11.3) yields

vðt þ /DtÞ ¼ /vðt þ DtÞ þ ð1� /ÞvðtÞ þOðDtÞ2; ð11:6Þ

which will be useful shortly. Now expanding the position of the
center of mass in a Taylor series about t + /Dt we obtain

uðt þ DtÞ ¼ uðt þ /DtÞ þ du
dt

				
tþ/Dt

ð1� /ÞDt

þ 1
2

d2u

dt2

					
tþ/Dt

ð1� /Þ2ðDtÞ2 þOðDtÞ3 ð11:7Þ

and

uðtÞ ¼ uðt þ /DtÞ � du
dt

				
tþ/Dt

/Dt þ 1
2

d2u

dt2

					
tþ/Dt

/2ðDtÞ2 þOðDtÞ3:

ð11:8Þ

Subtracting the two expressions yields
uðt þ DtÞ � uðtÞ
Dt

¼ vðt þ /DtÞ þ ÔðDtÞ: ð11:9Þ
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Fig. 20. Left: The volume averaged pressure hpiX. Right: The volume averaged normed deviator hkr0kiX.
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Inserting Eq. (11.6) yields

uðt þ DtÞ ¼ uðtÞ þ ð/vðt þ DtÞ þ ð1� /ÞvðtÞÞDt þ ÔðDtÞ2 ð11:10Þ

and thus using Eq. (11.5) yields

uðt þ DtÞ ¼ uðtÞ þ vðtÞDt þ /ðDtÞ2

m
Wðt þ /DtÞ þ ÔðDtÞ2: ð11:11Þ

The term W(t + /Dt) can be handled in two main ways:

� W(t + /Dt) �W(/u(t + Dt) + (1 � /)u(t)) or
� W(t + /Dt) � /W(u(t + Dt)) + (1 � /)W(u(t)).

The differences are quite minute between either of the above,
thus, for brevity, we choose the latter. In summary, we have the
following:

uðt þ DtÞ ¼ uðtÞ þ vðtÞDt þ /ðDtÞ2

m
ð/Wðuðt þ DtÞÞ

þ ð1� /ÞWðuðtÞÞÞ þ ÔðDtÞ2: ð11:12Þ

We note that

� When / = 1, then this is the (implicit) Backward Euler scheme,
which is very stable (very dissipative) and OðDtÞ2 locally in
time.
� When / = 0, then this is the (explicit) Forward Euler scheme,

which is conditionally stable and OðDtÞ2 locally in time.
� When / = 0.5, then this is the (implicit) ‘‘Midpoint” scheme,

which is stable and bOðDtÞ2 ¼ OðDtÞ3 locally in time.

In summary, we have for the velocity15

vðt þ DtÞ ¼ vðtÞ þ Dt
m
ð/Wðt þ DtÞ þ ð1� /ÞWðtÞÞ ð11:13Þ

and for the position

uðt þ DtÞ ¼ uðtÞ þ vðt þ /DtÞDt

¼ uðtÞ þ ð/vðt þ DtÞ þ ð1� /ÞvðtÞÞDt; ð11:14Þ

or more explicitly

uðt þ DtÞ ¼ uðtÞ þ vðtÞDt þ /ðDtÞ2

m
ð/Wðt þ DtÞ þ ð1� /ÞWðtÞÞ:

ð11:15Þ
15 In order to streamline the notation, we drop the cumbersome OðDtÞ-type terms.
In the continuum formulation, rx � T þ f ¼ q€u;m ¼ q and
W =rx � T + f where we must apply the (iterative) process intro-
duced earlier to each node in the system. Under infinitesimal defor-
mations, rX � T þ f ¼ qo

@2u
@t2 ;m ¼ qo and W =rX � T + f.

Appendix E. An electro–magneto–thermo–mechano–chemo
numerical example

As an example, in addition to the previous electromagnetic, the
following parameters were used (see the equations in the main
body of the paper for variable definitions)16:

� The displacement boundary condition: uj@X = 0.
� The (interior) displacement initial condition: u(x1, x2, x3) = 0.
� The chemical concentration boundary condition: cj@X = 1000.
� The (interior) chemical concentration initial condition: c(x1, x2,

x3) = 0.
� The matrix material shear modulus lsh

m ¼ 50 GPa.
� The particle material shear modulus lsh

p ¼ 100 GPa.
� The matrix material Lame parameter km = 100 GPa.
� The particle material Lame parameter kp = 200 GPa.
� The matrix material thermal expansion coefficient bm = 10�6.
� The particle material thermal expansion coefficient

bp = 5 � 10�6.
� The matrix material chemical heat generation parameter (for

the First Law of Thermodynamics) gm = 1000; recall qoz ¼ gj _cj.
� The particle material chemical heat generation parameter

gp = 5000.
� The matrix material chemical damage rate parameter

a1m = �10.
� The particle material chemical damage rate parameter

a1p = �50.
� The matrix material pressure damage rate parameter a2m = �10.
� The particle material pressure damage rate parameter

a2p = �50.
� The matrix material deviatoric damage rate parameter

a3m = �10.
� The particle material deviatoric damage rate parameter

a3p = �50.
� The matrix material critical pressure parameter k1m = 10 MPa.
� The particle material critical pressure parameter k1p = 50 MPa.
� The matrix material critical deviatoric norm parameter

k2m = 10 MPa.
16 The thermally-sensitive case was considered here. Also, the matrix material was
signified with a subscript ‘‘m” and the particle material with a subscript ‘‘p” for clarity.
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� The particle material critical deviatoric norm k2p = 50 MPa.
� The matrix material first reaction rate parameter r1m = 10�6.
� The particle material reaction rate parameter r1p = 5 � 10�6.
� The matrix material reaction rate parameter r2m = 10�6.
� The particle material reaction rate parameter r2p = 5 � 10�6.
� The matrix material baseline diffusivity Dm = 1.
� The particle material baseline diffusivity Dp = 5.
� The matrix material activation energy parameters for the reac-

tion rate (r1m): Q11m = 100, Q12m = 10�6 for the following
s1 ¼ r1e

Q11�Q12p
Rh .

� The particle material activation energy parameters for the reac-
tion rate (r1p): Q11p = 500, Q12p = 5 � 10�6.
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Fig. 21. Left: The volume averaged concentration hciX. R

Fig. 22. Internal probe: Left: The pressure p. Right

Fig. 23. Internal probe: Left: The chemical conc
� The matrix material activation energy parameters for the reac-
tion rate (r2m): Q21m = 100, Q22m = 10�6 for the following
s2 ¼ r2e

Q21�Q22p
Rh .

� The particle material activation energy parameters for the reac-
tion rate (r2p): Q21p = 500, Q22p = 5 � 10�6.
� The matrix material activation energy parameters for the diffu-

sion (Dom): U11m = 100, U12m = 10�6 for the following
D ¼ Doe

U21�U22p
Rh .

� The particle material activation energy parameters for the reac-
tion rate (Dop): U21p = 500. U22p = 5 � 10�6.

The results are shown in Figs. 20–23.
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