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Abstract

The present work develops a flexible and robust solution strategy to resolve coupled systems comprised of large numbers of flowing
particles embedded within a fluid. A model problem, consisting of particles which may undergo inelastic collisions in the presence of
near-field forces, is considered. The particles are surrounded by a continuous interstitial fluid which is assumed to obey the compressible
Navier–Stokes equations. Thermal effects are also considered. Such particle/fluid systems are strongly coupled, due to the mechanical
forces and heat transfer induced by the fluid onto the particles and vice-versa. Because the coupling of the various particle and fluid fields
can dramatically change over the course of a flow process, a primary focus of this work is the development of a recursive ‘‘staggering’’
solution scheme, whereby the time-steps are adaptively adjusted to control the error associated with the incomplete resolution of the
coupled interaction between the various solid particulate and continuum fluid fields. A central feature of the approach is the ability
to account for the presence of particles within the fluid in a straightforward manner that can be easily incorporated within any standard
computational fluid mechanics code based on finite difference, finite element or finite volume type discretization. A three dimensional
example is provided to illustrate the overall approach.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction: multifield particle–fluid systems

A wide range of modern industrial and scientific applications has emerged where a successful analysis requires the sim-
ulation of flowing particulate media which incorporates near-field interaction between particles, interparticle contact and
thermal effects, simultaneously.1 For example, industrial processes such as Chemical Mechanical Planarization (CMP),
which involves using chemically-reacting particles embedded within a fluid (gas or liquid) to ablate rough small-scale sur-
faces flat, have become important for the success of many micro- and nano-technologies, in particular for integrated circuit
fabrication.2 However, the process is still a technique of trial and error. During the last decade, understanding the basic
mechanisms involved in this process has initiated research efforts in both industry and academia. For a review of CMP
practice and applications, see Luo and Dornfeld [61–64]. It is clear that for the process to become viable and efficient,
0045-7825/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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1 Here we use the term ‘‘near-field’’ interaction to denote the combination of attractive and repulsive forces.
2 It is worth noting that, at the atomic scale, forces of attraction can arise from a temporary dipole created by fluctuating electron distributions around

an atom. This will induce a dipole on a neighboring atom, and, if the induced dipole is directed in the same way as the first atom, two molecules associated
with these atoms will attract one another. Between two atoms, such a force acts over a nanometer, however, when two small-scale (1–1000 lm) particles
approach one another, the effect is greatly multiplied and the forces act over much larger distances. Furthermore, repulsion forces can arise due to
ionization of the particle surfaces or due to the adsorption of ions onto the surfaces of particles.
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the underlying physics must be modeled in a detailed, non-phenomenological, manner. The accurate simulation of CMP
will require the description of the mechanics of fine-scale flowing particles, involving momentum exchange through
mechanical contact between particles and thermo-chemical effects. Furthermore, because flowing particles below the one
millimeter scale can acquire relatively large electrostatic charges, near-field effects must also be included. When dealing with
fine-scale particles, the presence of near-field interaction forces can produce particulate flows that are radically different
than purely contact-driven scenarios. For example, such near-field forces can lead to particle clustering, resulting in incon-
sistent planarization quality. Furthermore, neglecting such effects can lead to gross miscalculation of the power required to
manipulate such flows. Thus, it is critical to develop models, and reliable techniques, to computationally simulate the
dynamics of such multibody systems undergoing contact and near-field interaction simultaneously, within a fluid. Ulti-
mately, the ability to perform rapid computational simulation of particle dynamics raises the possibility of optimizing

CMP-related parameters, such as particle sizes, distributions, densities, grinding-pad surfaces, etc., for a given application.
In another realm, the natural sciences, the study of particle-laden dust clouds, stemming from ejecta (nickel, magnesium

and iron) from comets and asteroids is becoming increasingly more important. A prominent example is the famous Tem-
pel-Tuttle comet which passes through the solar system every 33 years. When the ejecta from this comet intersects the orbits
of satellites, a number of difficulties can occur. Due to the increasingly rapid commercialization of near-earth space, and
the presence of thousands of satellites, space-dust/satellite interaction problems are becoming of greater concern. Most lar-
ger objects, down to about the 0.1 m level, are tracked in low earth orbit. However, it is simply infeasible to track smaller
sized dust.3 For example so-called ‘‘Leonids’’, millimeter level clouds, so named because they appear to radiate from the
head of the constellation of Leo the Lion, have been blamed for the malfunction of several man made satellites [10]. There
are many more such debri clouds, such as Draconids, Lyrids, Peresids, Andromedids, etc., which are named for the con-
stellations from which they appear to emanate. Such debri may not only lead to mechanical damage to the satellites, but
can lead to instrumentation failure by disintegrating into charged particle-laden plasmas, which affect the sensitive electri-
cal components on board. In another space-related area, dust clouds are also important in the formation of planetessimals,
which are thought to initiate by the agglomeration of dust particles. For more information see Benz [12,13], Blum and
Wurm [17], Dominik and Tielens [25], Chokshi et al. [20], Wurm et al. [92], Kokubu and Ida [49,50], Mitchell and Frenk-
lach [66], Grazier et al. [39,40], Supulver and Lin [83], Tanga et al. [84], Cuzzi et al. [23], Weidenschilling and Cuzzi [88],
Weidenschilling et al. [89], Beckwith et al. [11], Barge and Sommeria [6], Pollack et al. [69], Lissauer [59], Barranco et al. [7]
and Barranco and Marcus [8,9].

Obviously, the number of research areas involving particles in a fluid undergoing various multifield processes is
immense, and it would be futile to attempt to catalog all of the various applications. A common characteristic of such sys-
tems is that the various physical fields (thermal, mechanical, chemical, electrical, etc.) are strongly coupled. The goal of the
present work is to develop a flexible and robust approach to solve such coupled systems. As a model problem we consider
the interaction of large numbers of particles undergoing inelastic collisions and simultaneous interparticle (non-local) near-
field attraction/repulsion. The particles are surrounded by a continuous interstitial fluid which is assumed to obey the com-
pressible Navier–Stokes equations. The particle/fluid system is strongly coupled due to the drag-forces induced by the fluid
onto the particles and vice-versa. In the modeling and simulations, thermal effects, such as radiative emission and convec-
tive heat transfer between the particles and the fluid, the generation of heat due to the drag-forces, thermal softening of the
particles and the thermal dependency of the fluid viscosity, are included. Since the coupling of the various particle and fluid
fields can dramatically change over the course of a flow process, the focus of this work is on the development of an iterative
staggering solution scheme, whereby the time-steps are adaptively adjusted to control the error associated with the incom-
plete resolution of the coupled interaction between the various solid particulate and continuum fluid fields. The technique
developed allows one to account for presence of particles in a manner which can easily be incorporated within any standard
computational fluid mechanics code based on finite difference, finite element or finite volume type discretization.

2. A model problem

In order to present concepts thoroughly, we consider a sufficiently complex model problem comprised of a group of non-
intersecting spherical particles (Np in total).4 The equation of motion for the ith particle in the system is (Fig. 1)

mi€ri ¼ Wtot
i ðr1; r2; . . . ; rNpÞ; ð2:1Þ

where ri is the position vector of the ith particle and where Wtot
i represents all forces acting on particle i. In particular,

Wtot
i ¼ Wdrag

i þWnf
i þWcon

i þWfric
i represents the forces due to fluid drag, near-field interaction, interparticle contact forces
3 Ground-based radar, optical and infrared sensors routinely track several thousand objects daily.
4 It is assumed that the particles are small enough that the effects of their rotation with respect to their mass centers is unimportant (to the overall motion

of the particle). However, even in the event that the particles are not extremely small, we assume that any ‘‘spin’’ of the particles is small enough to neglect
lift forces that may arise from the interaction with the surrounding fluid.
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Fig. 1. Decomposition of the fluid/particle interaction.
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and frictional forces. Clearly, under certain conditions one force may dominate over the others. However, this is generally
impossible to ascertain a priori, since the dynamics and coupling in the system may change dramatically during the course
of the flow process.

Remark: Throughout this work, boldface symbols indicate vectors or tensors. The inner product of two vectors u and v
is denoted u � v. At the risk of oversimplification, we ignore the distinction between second order tensors and matrices. Fur-
thermore, we exclusively employ a Cartesian basis. Therefore, if we consider the second order tensor A with its matrix rep-
resentation ½A�, then the product of two second order tensors A � B is defined by the matrix product ½A�½B�. The second
order inner product of two tensors or matrices is A : B ¼ trð½A�T½B�Þ.
2.1. A simple characterization of particle/fluid interaction

We first consider drag-force interactions between the fluid and particles. The drag-force acting on an object in a fluid
flow (occupying domain x and outward surface normal n) is defined as

Wdrag ¼
Z

ox
rf � ndA; ð2:2Þ

where rf is the Cauchy-stress tensor. For a Newtonian fluid, rf is given by

rf ¼ �P f 1þ kf trDf 1þ 2lfDf ¼ �P f1þ 3jf

trDf

3
1þ 2lf D

0
f ; ð2:3Þ

where Pf is the thermodynamic pressure, jf ¼ kf þ 2
3
lf is the bulk viscosity, lf is the absolute viscosity,

Df ¼ 1
2
ðrxvf þ ðrxvfÞTÞ is the symmetric part of the velocity gradient, trDf is the trace of Df, and where

D0f ¼ Df � tr Df

3
1 is the deviatoric part of Df. The stress is determined by solving the following coupled system of partial

differential equations (compressible Navier–Stokes):

Mass balance: oqf

ot ¼ �rx � ðqf vfÞ
Energy balance: qfCf

oh
ot þ ðrxhfÞ � vf

� �
¼ rf : rxvf þrx � ðKf � rhfÞ þ qfzf ;

Momentum balance: qf
ovf

ot þ ðrxvfÞ � vf

� �
¼ rx � rf þ qfbf ;

ð2:4Þ

where, at a point, qf is the fluid density, vf is the fluid velocity, hf is the fluid temperature, Cf is the fluid heat capacity, zf is
the heat source per unit mass, Kf is the thermal conductivity tensor, assumed to be isotropic of the form Kf ¼ K f1, Kf being
the scalar thermal conductivity and where bf represents body forces per unit mass. The thermodynamic pressure is given by
an equation of state,

ZðP f ; qf ; hfÞ ¼ 0: ð2:5Þ

The specific form of the equation of state will be discussed later in the presentation.
The fluid domain will require spatial discretization with some type of mesh, in conjunction with, for example, a finite

difference, finite volume or finite element method. Usually, it is extremely difficult to resolve the flow in the immediate
neighborhood of the particles, in particular if there are several particles. However, if the primary interest is in the dynamics
of the particles, as it is in this work, an appropriate approach, which permits a coarser discretization of the fluid continuum,
is to employ effective drag coefficients, for example, defined via

CD ¼
def kWdrag

i k
1
2
hqfixi

khvfixi
� vik2Ai

; ð2:6Þ

where hð�Þixi
¼def 1
jxi j
R

xi
ð�Þdxi is the volumetric average of the argument over the domain occupied by the ith particle, hvfixi

is the volumetric average of the fluid velocity, vi is the velocity is the of the ith (solid) particle and where Ai is the
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cross-sectional area of the ith (solid) particle. For example, one possible way to represent the drag coefficient is with a
piecewise definition, as a function of the Reynolds number [21]:

• for 0 < Re 6 1, CD ¼ 24
Re,

• for 1 < Re 6 400, CD ¼ 24
Re0:646,

• for 400 < Re 6 3� 105, CD ¼ 0:5,

• for 3� 105 < Re 6 2� 106, CD ¼ 0:000366Re0:4275,

• for 2� 106 < Re <1, CD ¼ 0:18,

where the local Reynolds number for a particle is Re ¼def 2bihqf ixi
khvf ixi

�vik
l and where bi is the radius of the ith particle. The use

of this simple concept is relatively straightforward to account for the presence of the solid particles in the fluid by augment-
ing the flow calculations with drag-forces (Fig. 1). Algorithmically speaking, one must compute the fluid flow with reaction
forces due to the presence of the particles. To this end, one can use the volumetric forces (bf) and heat sources (zf) within the
fluid domain for this purpose by writing

qf
ovf

ot þ ðrxvfÞ � vf

� �
¼ rx � rf þ qf bf ;

bf ¼ bD ¼ �
Wdrag

i
mi
¼ � CD

1
2hqf ixi

khvf ixi
�vik2Ai

mi
d; d ¼ hvf ixi

�vi

khvf ixi
�vik

� �
;

qfC
ohf

ot þ ðrxhfÞ � vf

� �
¼ rf : rxvf þrx � ðKf � rxhfÞ þ qf zf ;

zf ¼ zD ¼ cvjbD � ðhvfixi
� viÞj;

ð2:7Þ

where the drag-force on the fluid bD (per unit mass), is non-zero if its location coincides with the particle domain, and is
zero otherwise. Here, zD is the heat source due to the rate of work done by the drag-force on the fluid.5 Such source terms
are easily projected onto a finite difference or finite element grid.6 This drag-based approach is designed to account for par-

ticles in the fluid using a coarse mesh. In other words, the smallest (mesh) scale allowable is that associated with the dimensions
of the particles. Accordingly, we shall not employ meshes smaller than the particle length scale when simulations are performed

later.

Remarks: More detailed analyses of fluid–particle interaction can be achieved in two primary ways: (1) direct, brute-
force, numerical schemes, treating the particles as part of the fluid continuum (as another fluid or solid phase), and thus
meshing them in a detailed manner, or (2) with semi-analytical techniques, for example such as those based on approxi-
mation of the interaction between the particles and the fluid, employing an analysis of the (interstitial) fluid gaps using
lubrication theory. For a concise review of recent developments in such semi-analytical techniques, in particular methods
which go beyond local analyses of flow in a single fluid gap, using discrete network approximations, which account for
multiple hydrodynamic interactions, see Berlyand and Panchenko [15,16]. Although not employed here, discrete network
approximations appear to be quite attractive for possibly improving the description of the interaction between the particles
and the fluid, beyond a simple drag-based method, as adopted in this work, without resorting to detailed numerical
meshing.
2.2. Particle thermodynamics

Throughout the thermal analysis of the particles, we shall use relatively simple models. Consistent with the particle-
based philosophy, it is assumed that the temperature within each particle is uniform (a lumped mass approximation).
We remark that the validity of assuming a uniform temperature within a particle is dictated by the Biot number. A small
Biot number indicates that such an approximation is reasonable. The Biot number, for a sphere, scales with the ratio of
particle volume (V) to particle surface area (as),

V
as
¼ b

3
, which indicates that a uniform temperature distribution is appro-

priate, since the particles are, by definition, small. Since it is assumed that the temperature fields are uniform within the
particles, the gradient of the temperature within the particle is zero, i.e. rh ¼ 0. Therefore, a Fourier-type law for the heat
flux will register a zero value, q ¼ �K � rh ¼ 0.

Under these assumptions, we consider an energy balance, governing the interconversions of mechanical, thermal and
chemical energy in a system, dictated by the First Law of Thermodynamics. Accordingly, we require the time rate of
5 If the constant cv is not selected as unity, this can indicate endothermic or exothermic particle/fluid chemical reactions.
6 If the particles are significantly smaller than the mesh spacing, then the drag-forces associated with the particles are computed from the nearest node/

particle center pair.
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change of the sum of the kinetic energy (K) and stored energy (S) to be equal to the work rate (power, P) and the net heat
supplied (H)

d

dt
ðKþSÞ ¼ PþH; ð2:8Þ

where we assume that the stored energy is comprised solely of a thermal part, S ¼ mCh, C being the heat capacity per unit
mass. Consistent with an assumption that the particles deform negligibly during impact, the amount of stored mechanical en-

ergy is deemed insignificant. The kinetic energy is K ¼ 1
2
mv � v. The mechanical power term is due to the forces acting on a

particle

P ¼ dW

dt
¼ Wtot � v: ð2:9Þ

For the particles, it is assumed that a process of convection, for example governed by Newton’s law of cooling and ther-
mal radiation according to a simple Stefan–Boltzmann law, transpires. Accordingly, the First Law reads

m _v � vþ mC _h|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dðKþSÞ

dt

¼ Wtot � v|fflfflffl{zfflfflffl}
power¼P

�
hcasðh� h0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

convection

þmcvjbD � ðhvfix � vÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
drag

�Bas�ðh4 � h4
s Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

radiation|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

; ð2:10Þ

where h0 is the local temperature of the ambient fluid, hc is the convection coefficient (using Newton’s Law of cooling) and
where hs is the temperature of the far field surface (for example a container surrounding the flow) with which radiative
exchange is made. The Stefan–Boltzmann constant is B ¼ 5:67� 10�8 W

m2 K
, 0 6 � 6 1 is the emissivity, which indicates

how efficiently the surface radiates energy compared to a black-body (an ideal emitter), and as is the surface area of a par-
ticle. It is assumed that the radiation exchange between the particles is negligible.7 We recall that a blackbody is an ideal
radiating surface having the following properties: (1) It absorbs all incident radiation, regardless of wavelength and direc-
tion, (2) For a prescribed temperature and wavelength, no surface can emit more energy than a blackbody and (3)
Although the radiation emitted by a blackbody is a function of wavelength and temperature, it is independent of direction.
Since a blackbody is a perfect emitter, it serves as a baseline against which the radiative properties of actual surfaces may be
compared. The Stefan–Boltzmann law, which is computed by integrating the Planck representation of the emissive
power distribution of a blackbody over all wavelengths, allows the calculation of the amount of radiation emitted
in all directions and over all wavelengths simply from the knowledge of the temperature of the blackbody.
Because dK

dt ¼ m _v � v ¼ Wtot � v ¼ P, we obtain a simplified form of the First Law, dS
dt ¼H, and therefore Eq. (2.10)

becomes

mC _h ¼ �hcasðh� h0Þ þ mcvjbD � ðhvfix � vÞj �Bas�ðh4 � h4
s Þ; ð2:11Þ

where h0 ¼ hhfix is the local average of the surrounding fluid temperature.
Remarks: To account for the convective exchange between the fluid and particles, we amend the source term in Eq. (2.7)

for the fluid to read

zf ¼ zD ¼ cvjbf � ðhvfix � vÞj þ hcasðh� h0Þ
m

: ð2:12Þ

If the fluid is ‘‘radiationally thick’’, then we assume that no radiation enters the system from the far field, namely that
Bas�h

4
s ¼ 0 in Eq. (2.11), and that any emission from the particle gets absorbed by the fluid. Thus, in that situation, we

can again amend the source term to read

zf ¼ zD ¼ cvjbf � ðhvfix � vÞj þ hcasðh� h0Þ þBas�h
4

m
: ð2:13Þ
2.3. A model for near-field interaction and particle contact

Following the approach found in Zohdi [96–98] for dry (fluid-free) particulate flows, we consider the following, relatively
general, central-force attraction-repulsion form for the near-field forces (in Eq. (2.1)) induced by all particles on particle i
7 Various arguments for such an assumption can be found in the classical text of Bohren and Huffman [18].
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Wnf
i ¼

XNp

j 6¼i

a1kri � rjk�b1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
attractive part

� a2kri � rjk�b2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
repulsive part

0
B@

1
CA nij|{z}

unit vector

0
B@

1
CA; ð2:14Þ

where k � k represents the Euclidean norm (distance) in R3, where all of the parameters, a’s and b’s, are non-negative, and
where the normal direction is determined by the difference in the position vectors of their centers, nij ¼

def rj�ri

kri�rjk. Provided
that the exponents are suitably chosen in Eq. (2.14), namely b2

b1
> 1, the force interaction of the form chosen is stable, in

the sense that for small disturbances, the system will remain near an equilibrium position, as opposed to unstable equilib-
rium, where perturbations cause the system to move away from an equilibrium position, with an increasing velocity. We
refer the reader to Appendix A for details. More complex interaction force-forms modeling, for example, binding forces
can be found in Zohdi [98]. There are similarities between particulate flow models and those found in the field of Molecular
Dynamics (MD), where the motion of individual atoms is described by the Newton’s Second Law with the forces computed
from a prescribed potential energy function, V ðrÞ, m€r ¼ �rV ðrÞ. For reviews of MD, see Haile [41], Hase [43], Schlick [76]
or Rapaport [74]. More complex (tertiary and binary) potentials are possible, and take the form of familiar Mie, Lennard-
Jones, and Morse potentials [67]. The expansions beyond the binary interactions introduce either three-body terms directly
[80] or as modifications of the two-body representations [86]. For reviews, we refer the reader to Frenklach and Carmer
[36]. Depending on the degree of near-field strength, the particulate system can exhibit vibratory motion. This can be qual-
itatively explained by recognizing that the governing equations are formally similar to classical second order equations
describing harmonic oscillators. For more details, see Zohdi [96,98].

2.3.1. Normal contact

We now consider particle contact in the presence of near-field forces. We assume that the particles remain spherical after
impact, i.e. any permanent deformation is negligible. Also, in contrast with the usual analyses of impacting particles, which
neglect all other forces except those of mechanical contact, we include the near-field effects and other external forces, for
example due to fluid drag. For two impacting particles i and j, normal to the line of impact, a statement for a balance of
linear momentum relating the states before impact (time ¼ t) and after impact (time ¼ t þ dt) reads as

mivinðtÞ þ mjvjnðtÞ þ
Z tþdt

t
E i � nij dt þ

Z tþdt

t
Ej � nij dt ¼ mivinðt þ dtÞ þ mjvjnðt þ dtÞ; ð2:15Þ

where the subscript n denotes the normal component of the velocity (along the line connecting particle centers) and the E’s
represent all forces induced by near-field interaction with other particles, as well as all other external forces, if any (for
example drag), to the pair. If one isolates one of the members of the colliding pair, then

mivinðtÞ þ
Z tþdt

t
In dt þ

Z tþdt

t
Ei � nij dt ¼ mivinðt þ dtÞ; ð2:16Þ

where
R tþdt

t I n dt is the total normal impulse due to impact. For a pair of particles undergoing impact, let us consider a
decomposition of the collision event into a compression (dt1) and recovery (dt2) phase, i.e. dt ¼ dt1 þ dt2. Between the com-
pression and recovery phases, the particles achieve a common velocity, denoted vcn, at the intermediate time t þ dt1. A com-
mon normal velocity for particles should be interpreted as indicating that the relative velocity in the normal direction
between particle centers is zero. We may write for particle i, along the normal, in the compression phase of impact

mivinðtÞ þ
Z tþdt1

t
I n dt þ

Z tþdt1

t
E i � nij dt ¼ mivcn ð2:17Þ

and in the recovery phase

mivcn þ
Z tþdt

tþdt1

In dt þ
Z tþdt

tþdt1

Ei � nij dt ¼ mivinðt þ dtÞ: ð2:18Þ

For the other particle (j), in the compression phase,

mjvjnðtÞ �
Z tþdt1

t
In dt þ

Z tþdt1

t
Ej � nij dt ¼ mjvcn ð2:19Þ

and in the recovery phase

mjvcn �
Z tþdt

tþdt1

In dt þ
Z tþdt

tþdt1

Ej � nij dt ¼ mjvjnðt þ dtÞ: ð2:20Þ
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This leads to an expression for the coefficient of restitution

e ¼def

R tþdt
tþdt1

In dtR tþdt1
t In dt

¼ miðvinðt þ dtÞ � vcnÞ � Einðt þ dt1; t þ dtÞ
miðvcn � vinðtÞÞ � Einðt; t þ dt1Þ

¼ �mjðvjnðt þ dtÞ � vcnÞ þ Ejnðt þ dt1; t þ dtÞ
�mjðvcn � vjnðtÞÞ þ Ejnðt; t þ dt1Þ

; ð2:21Þ

where

Einðt þ dt1; t þ dt2Þ ¼def
Z tþdt

tþdt1

Ei � nij dt; Ejnðt þ dt1; t þ dt2Þ ¼def
Z tþdt

tþdt1

Ej � nij dt;

Einðt; t þ dt1Þ ¼
def
Z tþdt1

t
Ei � nij dt; Ejnðt; t þ dt1Þ ¼

def
Z tþdt1

t
Ej � nij dt: ð2:22Þ

If we eliminate vcn, we obtain an expression for e

e ¼ vjnðtþdtÞ�vinðtþdtÞþDijðtþdt1;tþdtÞ
vinðtÞ�vjnðtÞþDijðt;tþdt1Þ

; ð2:23Þ

where we define the operator over any time interval ða; bÞ as Dijða; bÞ ¼
def 1

mi
Einða; bÞ � 1

mj
Ejnða; bÞ. Thus, we may rewrite Eq.

(2.23) as

vjnðt þ dtÞ ¼ vinðt þ dtÞ � Dijðt þ dt1; t þ dtÞ þ eðvinðtÞ � vjnðtÞ þ Dijðt; t þ dt1ÞÞ: ð2:24Þ
It is convenient to denote the average force acting on the particle from external sources as Ein ¼

def 1
dt

R tþdt
t Ei � nij dt. If e is

explicitly known, then one can write, combining Eqs. (2.23) and (2.15)

vinðt þ dtÞ ¼ mivinðtÞ þ mjðvjnðtÞ � eðvinðtÞ � vjnðtÞÞÞ
mi þ mj

þ ðEin þ EjnÞdt � mjðeDijðt; t þ dt1Þ � Dijðt þ dt1; t þ dtÞÞ
mi þ mj

; ð2:25Þ

where, once vinðt þ dtÞ is known, one can subsequently also solve for vjnðt þ dtÞ via Eq. (2.24).

Remark 1. Clearly, the forces needed to compute terms in coefficient of restitution e, such as Ein, Ejn and Dij depend on the
particle kinetics during impact, i.e. the outcome of the system dynamics, and thus implicitly on e. In other words, an
implicit system of nonlinear coupled equations arises. In order to solve the system of coupled nonlinear equations, later in
this work, an iterative (fixed-point type) staggering process is developed.

Remark 2. Eq. (2.23) collapses to the classical expression for the ratio of the relative velocities before and after impact, if
the near-field forces are negligible,

e ¼def vjnðt þ dtÞ � vinðt þ dtÞ
vinðtÞ � vjnðtÞ

: ð2:26Þ

Later, it will be useful to define the average impulsive normal contact force between the particles acting during the impact
event as

In ¼
def 1

dt

Z tþdt

t
In dt ¼ miðvinðt þ dtÞ � vinðtÞÞ

dt
� Ein: ð2:27Þ

In particular, as will be done later in the analysis, when we discretize the equations of motion with a discrete (finite differ-
ence) time-step of Dt, where dt� Dt, we shall define the impulsive normal contact contribution to the total force (Eq. (2.1))
to be
Wcon ¼ Indt
Dt

nij; ð2:28Þ

which will be included in the total force acting on a particle, Wtot
i ¼ Wdrag

i þWnf
i þWcon

i þWfric
i . Furthermore, at the imple-

mentation level, we choose dt ¼ cDt, where 0 < c� 1 and where Dt is the time-step discretization size, which will be intro-
duced later in the work.8 We assume dt1 þ dt2 ¼ dt1 þ edt1, which immediately allows the following definitions

dt1 ¼
cDt

1þ e
and dt2 ¼

ecDt
1þ e

: ð2:29Þ

These results are consistent with the fact that the recovery time vanishes (all compression and no recovery) for e! 0
(asymptotically plastic) and, as e! 1, the recovery time equals the compression time (dt2 ¼ dt1, asymptotically elastic).
For a more detailed treatment of impact duration times, see Johnson [44].
8 A typical choice is 0 < c 6 0:01. The system is insensitive to c below 0.01.
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2.3.2. Friction

To account for frictional stick-slip phenomena, during impact for an arbitrary particle pair (i and j), the tangential
velocities at the beginning of the impact time interval, time ¼ t, are computed by subtracting the relative normal velocity
away from the total relative velocity,

vjtðtÞ � vitðtÞ ¼ ðvjðtÞ � viðtÞÞ � ððvjðtÞ � viðtÞÞ � nijÞnij: ð2:30Þ

One then writes the equation for tangential momentum change during impact for the ith particle

mivitðtÞ � I fdt þ Eitdt ¼ mivct, where the friction contribution is I f ¼ 1
dt

R tþdt
t I f dt, where the total contributions from all

other particles in the tangential direction (tij) are Eit ¼ 1
dt

R tþdt
t E i � tij dt and where vct is the common tangential velocity

of particles i and j in the tangential direction.9 Similarly, for the jth particle we have mjvjtðtÞ þ I fdt þ Ejtdt ¼ mjvct. There
are two unknowns, I f and vct. The main quantity of interest is I f , which can be solved for

I f ¼
ðmjEit � miEjtÞdt þ mimjðvitðtÞ � vjtðtÞÞ

ðmi þ mjÞdt
: ð2:31Þ

The friction force is then Wfric
i ¼ jI f jtij. However, consistent with stick-slip models of Coloumb friction, one first assumes no

slip occurs. If jI f j > lsjInj, where ls is the coefficient of static friction, then slip must occur and a dynamic sliding friction
model is used. If sliding occurs, the friction force is assumed to be proportional to the normal force and opposite to the
direction of relative tangent motion, i.e.

Wfric
i ¼def

ldkWconk vjt � vit

kvjt � vitk
¼ �Wfric

j ; ð2:32Þ

where ld the dynamic coefficient of friction and where ld 6 ls. There are limitations on the friction coefficients for such
models to make physical sense. For general dynamic analyses of such mechanical models involving friction see Oden
and Pires [68], Martins and Oden [65], Kikuchi and Oden [47], Klarbring [48] or Cho and Barber [19]. For a recent over-
view, see Wriggers [91].

2.3.3. Contact-thermal sensitivity

It is important to realize that, in reality, the phenomenological parameter e depends on the severity of the impact veloc-
ity. For extensive experimental data, see Goldsmith [38]. Qualitatively, the coefficient of restitution will decrease with the
relative velocity of approach. A mathematical idealization of the behavior can be constructed as follows:

e ¼def
max e0 1� Dvn

v�

� �
; e�

� �
; ð2:33Þ

where v* is a critical threshold velocity (normalization) parameter and where the relative velocity of approach is defined by
Dvn ¼

def jvjnðtÞ � vinðtÞj and e� is a (typically small) lower limit to the coefficient of restitution.10

In many cases, thermal effects during the impact process are important. For instance, the presence of a reactive sub-
stance (gas) adsorbed onto the surface of interplanetary dust can be a source of intense heat generation, through thermo-
chemical reactions activated by impact forces, which thermally soften the material, thus reducing the coefficient of
restitution, which in turn strongly affects the mechanical impact event itself.11 Also, in the previously mentioned industrial
CMP processes, induced (deliberate) particle reactivity is commonplace. A somewhat ad-hoc approach, building on the
relation in Eq. (2.33), is to construct a thermally dependent coefficient of restitution as follows [98]:

e ¼def
max e0 1� Dvn

v�

� �
; e�

� �� �
max 1� h

h�

� �
; 0

� �� �
; ð2:34Þ

where h* can be considered as a thermal softening temperature.12

3. Numerical discretization of the Navier–Stokes equations

We now develop a fully implicit staggering scheme, in conjunction with a finite difference discretization, to solve the
coupled system. Generally, such schemes proceed, within a discretized time-step, by solving each field equation individu-
ally, allowing only the corresponding primary field variable (qf , vf or hf ) to be active. This effectively (momentarily) decou-
9 They do not move relative to one another.
10 Lower values of v* represent softer materials, which exhibit more dissipation upon impact than harder materials.
11 This is discussed shortly.
12 Lower values of h* represent more thermally sensitive materials, with relatively more dissipative impact events. Generally, decreasing v* and h* makes

the system more dissipative and, consequently, easier to simulate, since it is less stiff.
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ples the system of differential equations. After the solution of each field equation, the primary field variable is updated, and
the next field equation is solved in a similar manner, with only the corresponding primary variable being active. For accu-
rate numerical solutions, the approach requires small time-steps, primarily because the staggering error accumulates with
each passing increment. Thus, such computations are usually computationally intensive.

First, let us consider a finite difference discretization of the derivatives in the governing equations where, for brevity, we
write (L indicates the time-step counter, vL

f ¼
def

vfðtÞ, vLþ1
f ¼def

vfðt þ DtÞ, etc.) for each finite difference node ði; j; kÞ

qi;j;k;Lþ1
f ¼ qi;j;k;L

f � Dtðrx � ðqfvfÞÞi;j;k;Lþ1
;

ZðP i;j;k;Lþ1
f ; qi;j;k;Lþ1

f ; hi;j;k;Lþ1
f Þ ¼ 0;

hi;j;k;Lþ1
f ¼ hi;j;k;L

f � Dtðrxhf � vfÞi;j;k;Lþ1 þ Dt
qf Cf
ðrf : rxvf þrx � ðKf � rxhfÞ þ qf zfÞ

� �i;j;k;Lþ1

;

vi;j;k;Lþ1
f ¼ vi;j;k;L

f � Dtðrxvf � vfÞi;j;k;Lþ1 þ Dt
qf
ðrx � rf þ qf bfÞi;j;k;Lþ1

;

ð3:1Þ

where the derivatives are computed by the following; for the continuity equation:

oqf

ot

� �i;j;k;L � qf ðx1;x2;x3;tþDtÞ�qf ðx1;x2;x3;tÞ
Dt ¼ qi;j;k;Lþ1

f
�qi;j;k;L

f

Dt ;

rx � ðqfvfÞ � ðqf vf 1Þiþ1;j;k;L�ðqf vf 1Þi�1;j;k;L

2Dx1

þ ðqf vf 2Þi;jþ1;k;L�ðqf vf 2Þi;j�1;k;L

2Dx2

þ ðqf vf 3Þi;j;kþ1;L�ðqf vf 3Þi;j;k�1;L

2Dx3

ð3:2Þ

for the balance of energy

qfCf
ohf

ot

� �i;j;k;L � qi;j;k;L
f Cf

ðhi;j;k;Lþ1
f

�hi;j;k;L
f

Þ
Dt ;

ðqfCfrxhf � vfÞi;j;k;L � qi;j;k;L
f Cf vi;j;k;L

f 1

hiþ1;j;k;L
f

�hi�1;j;k;L
f

2Dx1
þ vi;j;k;L

f 2

hi;jþ1;k;L
f

�hi;j�1;k;L
f

2Dx2
þ vi;j;k;L

f 3

hi;j;kþ1;L
f

�hi;j;k�1;L
f

2Dx3

� �
;

ðrf : rxvfÞi;j;k;L � ri;j;k;L
f 11

viþ1;j;k;L
f 1

�vi�1;j;k;L
f 1

2Dx1
þ ri;j;k;L

f 22

vi;jþ1;k;L
f 2

�vi;j�1;k;L
f 2

2Dx2
þ ri;j;k;L

f 33

vi;j;kþ1;L
f 3

�vi;j;k�1;L
f 3

2Dx3

þri;j;k;L
f 12

vi;jþ1;k;L
f 1

�vi;j�1;k;L
f 1

2Dx2
þ viþ1;j;k;L

f 2
�vi�1;j;k;L

f 2

2Dx1

� �
þ ri;j;k;L

f 23

vi;j;kþ1;L
f 2

�vi;j;k�1;L
f 2

2Dx3
þ vi;jþ1;k;L

f 3
�vi;j�1;k;L

f 3

2Dx2

� �

þri;j;k;L
f 31

viþ1;J ;k;L
f 3

�vi�1;j;k;L
f 3

2Dx1
þ vi;j;kþ1;L

f 1
�vi;j;k�1;L

f 1

2Dx3

� �
;

rx � ðK � rxhfÞð Þi;j;k;L � K
i;j;k;L
f

hiþ1;j;k;L
f

�2hi;j;k;L
f

þhi�1;j;k;L
f

Dx2
1

þK
i;j;k;L
f

hi;jþ1;k;L
f

�2hi;j;k;L
f

þhi;j�1;k;L
f

Dx2
2

þK
i;j;k;L
f

hi;j;kþ1;L
f

�2hi;j;k;L
f

þhi;j;k�1;L
f

Dx2
3

ð3:3Þ

and for the balance of linear momentum

ovf 1

ot

� �i;j;k;L
� vi;j;k;L

f 1
�vi;j;k;L�1

f 1

Dt ;
ovf 2

ot

� �i;j;k;L
� vi;j;k;L

f 2
�vi;j;k;L�1

f 2

Dt ;
ovf 3

ot

� �i;j;k;L
� vi;j;k;L

f 3
�vi;j;k;L�1

f 3

Dt ;

ððrxvfÞ � vfÞi;j;k;L � vi;j;k;L
f 1

viþ1;j;k;L
f 1

�vi�1;j;k;L
f 1

2Dx1
þ vi;j;k;L

f 2

vi;jþ1;k;L
f 1

�vi;j�1;k;L
f 1

2Dx2
þ vi;j;k;L

f 3

vi;j;kþ1;L
f 1

�vi;j;k�1;L
f 1

2Dx3

þvi;j;k;L
f 1

viþ1;j;k;L
f 2

�vi�1;j;k;L
f 2

2Dx1
þ vi;j;k;L

f 2

vi;jþ1;k;L
f 2

�vi;j�1;k;L
f 2

2Dx2
þ vi;j;k;L

f 3

vi;j;kþ1;L
f 2

�vi;j;k�1;L
f 2

2Dx3

þvi;j;k;L
f 1

viþ1;j;k;L
f 3

�vi�1;j;k;L
f 3

2Dx1
þ vi;j;k;L

f 2

vi;jþ1;k;L
f 3

�vi;j�1;k;L
f 3

2Dx2
þ vi;j;k;L

f 3

vi;j;kþ1;L
f 3

�vi;j;k�1;L
f 3

2Dx3
;

ðrx � rfÞi;j;k;L �
riþ1;j;k;L

f 11
�ri�1;j;k;L

f 11

2Dx1
þ ri;jþ1;k;L

f 12
�ri;j�1;k;L

f 12

2Dx2
þ ri;j;kþ1;L

f 13
�ri;j;k�1;L

f 13

2Dx3

� �
e1

þ riþ1;j;k;L
f 21

�ri�1;j;k;L
f 21

2Dx1
þ ri;jþ1;k;L

f 22
�ri;j�1;k;L

f 22

2Dx2
þ ri;j;kþ1;L

f 23
�ri;j;k�1;L

f 23

2Dx3

� �
e2

þ riþ1;j;k;L
f 31

�ri�1;j;k;L
f 31

2Dx1
þ ri;jþ1;k;L

f 32
�ri;j�1;k;L

f 32

2Dx2
þ ri;j;kþ1;L

f 33
�ri;j;k�1;L

f 33

2Dx3

� �
e3:

ð3:4Þ

The discretized system is formulated next as an implicit time-stepping scheme within each time-step L, whereby (1) one
solves for the density, assuming the thermal and velocity fields fixed, (2) one solves for the temperature, assuming the
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density and velocity fields fixed, then (3) one solves for the velocity, assuming the density and thermal fields fixed. Below,
we formulate such a system, with an iterative counter K (within a time-step), for each finite difference node

qi;j;k;Lþ1;K
f ¼ qi;j;k;L

f � Dtðrx � ðqf vfÞÞi;j;k;Lþ1;K�1
;

ZðP i;j;k;Lþ1;K�1
f ; qi;j;k;Lþ1;K

f ; hi;j;k;Lþ1;K�1
f Þ ¼ 0;

hi;j;k;L;K
f ¼ hi;j;k;L

f � Dtðrxhf � vfÞi;j;k;Lþ1;K�1 þ Dt
qf Cf
ðrf : rxvf þrx � ðKf � rxhfÞ þ qf zfÞ

� �i;j;k;Lþ1;K�1

;

vi;j;k;Lþ1;K
f ¼ vi;j;k;L

f � Dtðrxvf � vfÞi;j;k;Lþ1;K�1 þ Dt
qf
ðrx � rf þ qf bfÞ

� �i;j;k;Lþ1;K�1

:

ð3:5Þ

In an abstract setting, we have:

Af 1ðqLþ1;K
f ; hLþ1;K�1

f ; vLþ1;K�1
f Þ ¼Ff 1ðqLþ1;K�1

f ; hLþ1;K�1
f ; vLþ1;K�1

f . . .Þ ðCONTINUITYÞ;

Af 2ðqLþ1;K
f ; hLþ1;K

f ; vLþ1;K�1
f Þ ¼Ff 2ðqLþ1;K

f ; hLþ1;K�1
f ; vLþ1;K�1

f . . .Þ ðENERGYÞ;
Af 3ðqLþ1;K

f ; hLþ1;K
f ; vLþ1;K

f Þ ¼Ff 3ðqLþ1;K
f ; hLþ1;K

f ; vLþ1;K�1
f . . .Þ ðMOMENTUMÞ;

ð3:6Þ

where only the underlined variable is active (to be solved for) in the corresponding differential equation.

4. Numerical discretization of the particle equations

For the time discretization of the acceleration terms in the equations of motion (Eq. (2.1)), for each particle, one writes

€rLþ1 � _rLþ1 � _rL

Dt
�

rLþ1�rL

Dt � _rL

Dt
� rLþ1 � rL

Dt2
� _rL

Dt
; ð4:1Þ

which collapses to the familiar difference stencil of €rLþ1 � rLþ1�2rLþrL�1

ðDtÞ2 , when all the time-steps size are uniform. Inserting this
into m€r ¼ WtotðrÞ leads to

rLþ1;K � Dt2

m
WtotðrLþ1;K�1Þ
� �

þ rL þ Dt_rL
� �

: ð4:2Þ

For the thermal behavior, after temporal integration with the previously used finite difference time-step (for the fluid), we
have (from Eq. (4.1))

hðt þ DtÞ ¼ mC
mC þ hcasDt

hðtÞ � DtBas�

mC þ hcasDt
ðh4ðt þ DtÞ � h4

s Þ þ
mcvDtjbD � ðhvfix � vÞj

mC þ hcasDt
þ hcasDth0

mC þ hcasDt
: ð4:3Þ

This implicit nonlinear equation for h, for each particle, is recast as

hLþ1;K ¼ mC
mC þ hcasDt

hL � DtBas�

mC þ hcasDt
ððhLþ1;K�1Þ4 � h4

s Þ þ
mcvDtjbD � ðhvLþ1;K

f ix � vLþ1;KÞj
mC þ hcasDt

þ hcasDth0

mC þ hcasDt
ð4:4Þ

and is added into the fixed-point scheme with the equations of momentum balance and the equations governing the fluid
mechanics. Concisely, the equations for the particle mechanics problem can be addressed in an abstract setting, whereby
one solves for the particle positions, assuming the thermal fields fixed:

Ap1ðrLþ1;K ; hLþ1;K�1Þ ¼Fp1ðrLþ1;K�1; hLþ1;K�1Þ; ð4:5Þ

then one solves for the thermal fields, assuming the particle positions fixed,

Ap2ðrLþ1;K ; hLþ1;KÞ ¼Fp2ðrLþ1;K ; hLþ1;K�1Þ: ð4:6Þ

Both of these equations, and the equations for the fluid, are solved simultaneously with an adaptive multifield staggering
scheme, which we discuss shortly.

Remarks: In order to determine the thermal state of the particles when impact-induced reactions are significant, we shall
decompose the heat generation and heat transfer processes into two stages. Stage I describes the extremely short time inter-
val when impact occurs, dt� Dt, and accounts for the effects of chemical reactions, which are relevant in certain applica-
tions, and energy release due to mechanical straining. Stage II accounts for the post impact behavior involving convective
and radiative effects, as discussed earlier. As before, we consider an energy balance, governing the interconversions of
mechanical, thermal and chemical energy in a system, dictated by the First Law of Thermodynamics,
d
dt ðKþSÞ ¼ PþH, with the previous assumptions leading to dS

dt ¼H. For Stage I, the primary source of heat is the
chemical reactions that occur upon impact, due to the presence of a reactive layer. The chemical reaction energy is defined
as
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dH ¼def
Z tþdt

t
Hdt: ð4:7Þ

Eq. (2.8) can be rewritten for the temperature at time ¼ t þ dt as

hðt þ dtÞ ¼ hðtÞ þ dH
mC

: ð4:8Þ

The energy released from the reactions is assumed to be proportional to the amount of the fluid substance (for example a
gas) available to be compressed in the contact area between the particles. A typical, ad-hoc approximation in combustion
processes is to write, for example, a linear relation, with a saturation (limiting) value (n),

dH � n min
jInj
I�n
; 1

� �
pb2; ð4:9Þ

where n is the reaction constant (energy per unit area [J/m2]), I�n is a normalization parameter and b is the particle radius.
For details on a variety of such relations of this type see, for example, Schmidt [77]. For the particle sizes and material
properties of interest, the term, dH

mC , in Eq. (4.8) indicates that

dh ¼def
hðt þ dtÞ � hðtÞ ¼ dH

mC
/ n

qCb
: ð4:10Þ

Thus, when values of n are chosen such that n
qCb	 1, this will generate significant amount of heat.13 Thereafter (Stage II,

post-impact), it is assumed that a process of convection, for example governed by Newton’s law of cooling, and radiation
according to a simple Stefan–Boltzmann law transpires. Since dt� Dt we assign hL ¼ hðt þ dtÞ ¼ hðtÞ þ dH

mC and replace hL

with it in Eq. (4.4) to obtain

hLþ1;K ¼ mC
mC þ hcasDt

hL � DtBas�

mC þ hcasDt
ððhLþ1;K�1Þ4 � h4

s Þ þ
mcvDtjbD � ðhvLþ1;K

f ix � vLþ1;KÞj
mC þ hcasDt

þ hcasDth0

mC þ hcasDt
: ð4:11Þ
5. An adaptive staggering solution scheme

We now develop a temporally-adaptive staggering scheme by extending an approach found in Zohdi [94–97]. Broadly
speaking, staggering schemes proceed by solving each field equation individually, allowing only the primary field variable
to be active. After the solution of each field equation, the primary field variable is updated, and the next field equation is
addressed in a similar manner. Such approaches have a long history in the computational mechanics community. For
example, see Schrefler [78], Zienkiewicz [93], Lewis et al. [54] and Lewis and Schrefler [53]. Park and Felippa [70], Piperno
[71], Le Tallec and Mouro [52], Doltsinis [26,27] and the extensive works of Farhat and coworkers [72,32,51,33,73,34].
5.1. Analysis of the fluid/particle system

Let us denote the entire coupled system as AðwLþ1Þ ¼F, where w is a multifield vector that represents the particle posi-
tions (r), the particle temperatures (h), the nodal fluid velocities (vf) and temperatures (hf ), i.e. w ¼ ðr; h; vf ; hfÞ. It is con-
venient to write

AðwLþ1Þ �F ¼ GðwLþ1Þ � wLþ1 þR ¼ 0; ð5:1Þ

where R is a remainder term which does not depend on the solution, i.e. R 6¼ RðwLþ1Þ. A straightforward iterative scheme
can be written as

wLþ1;K ¼ GðwLþ1;K�1Þ þR: ð5:2Þ

The convergence of such a scheme is dependent on the characteristics of G. Namely, a sufficient condition for convergence
is that G is a contraction mapping for all wLþ1;K , K ¼ 1; 2; 3 . . .. In order to investigate this further, we define the staggering
error as ELþ1;K ¼ wLþ1;K � wLþ1. A necessary restriction for convergence is iterative self consistency, i.e. the ‘‘exact’’ (stag-
gering error free) solution must be represented by the scheme GðwLþ1Þ þR ¼ wLþ1. Enforcing this restriction, a sufficient
condition for convergence is the existence of a contraction mapping of the form can be written

kELþ1;Kk ¼ kwLþ1;K � wLþ1k ¼ kGðwLþ1;K�1Þ � GðwLþ1Þk 6 gkwLþ1;K�1 � wLþ1k; ð5:3Þ
13 By construction, this model has increased heat production, via dH, as j increases.
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where, if g < 1 for each iteration K, then ELþ1;K ! 0 for any arbitrary starting value wLþ1;K¼0 as K !1. This contraction
condition is sufficient, but not necessary, for convergence. For example, if we isolate the equation for the dynamics of the
particles,

rLþ1;K � Dt2

m
ðWtotðrLþ1;K�1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GðrLþ1;K�1Þ

þ ðrL þ Dt_rLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
R

; ð5:4Þ
we observe that convergence is restricted by g / EIGðGÞ / Dt2

m . Thus, decreasing the time-step size improves the conver-
gence, however, we want to simultaneously maximize the time-step sizes to decrease overall computing time, while still
meeting an error tolerance. In order to achieve this goal, we follow an approach in Zohdi [94,95] initially developed for
continuum thermo-chemical multifield problems in which (1) one approximates g � SðDtÞp (S is a constant) and (2) one
assumes that the error within an iteration behaves approximately according to ðSðDtÞpÞKkELþ1;0k ¼ kELþ1;Kk,
K ¼ 1; 2; . . ., where kELþ1;0k is the initial norm of the iterative error and S is a function intrinsic to the system.14 Our goal
is to meet an error tolerance in exactly a preset number of iterations. To this end, one writes this in the following approx-
imate form, ðSðDttolÞpÞKdkELþ1;0k ¼ TOL, where TOL is a tolerance and where Kd is the number of desired iterations.15 If
the error tolerance is not met in the desired number of iterations, the contraction constant g is too large. Accordingly, one
can solve for a new smaller step size, under the assumption that S is constant,16

Dttol ¼ Dt
TOL
kELþ1;0k

� � 1
pKd

kELþ1;Kk
kELþ1;0k

� � 1
pK

0
B@

1
CA: ð5:5Þ
The assumption that S is constant is not critical, since the time-steps are to be recursively refined and unrefined repeatedly.
Clearly, the previous expression can also be used for time-step enlargement, if convergence is met in less than Kd iterations.
Time-step size adaptivity is paramount, since the flow’s dynamics can dramatically change over the course of time, requir-
ing radically different time-step sizes for a preset level of accuracy. However, one must respect an upper bound dictated by
the discretization error, i.e., Dt 6 Dtlim. In order to couple this to the multifield computations, we define the normalized
errors within each time-step, for the particles (summing over all particles)

ErK ¼
def krLþ1;K � rLþ1;K�1k

krLþ1;K � rLk and EhK ¼
def khLþ1;K � hLþ1;K�1k

khLþ1;K � hLk
ð5:6Þ
and for the fluid (summing over all of the finite difference nodes)

Êrf K ¼
def kvLþ1;K

f � vLþ1;K�1
f k

kvLþ1;K
f � vL

f k
and Êhf K ¼

def khLþ1;K
f � hLþ1;K�1

f k
khLþ1;K

f � hL
f k

: ð5:7Þ
One can interpret there error metrics as the ratio of the staggering error to the change in the actual solution (from time-step
to time-step). We now combine all of these (normalized) error metrics (ratios) into one single measure

Etot;K ¼
w1ErK þ w2EhK þ w3Êrf K þ w4Êhf K

w1 þ w2 þ w3 þ w4

; ð5:8Þ
where the wi’s are weights. The overall algorithm is as follows:
14 For the class of problems under consideration, due to the quadratic dependency on Dt, p � 2.
15 Typically, Kd is chosen to be between 5 and 10 iterations.
16 In the definition of the error, since the ‘‘true’’ solution at a time-step, wLþ1, is unknown, we use the most current value of the solution, wLþ1;K , thus the

error is to be interpreted as the relative error.
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ð5:9Þ
The purpose of the algorithm is to deliver solutions where the coupling is resolved in an iterative manner, by the recursive
staggered solution of the various field equations, constraints, etc. The incomplete coupling error is controlled by adaptively
adjusting the time-step sizes, while the temporal discretization accuracy dictates the upper limit on the time-step size (Dtlim).

Remark 1. In Box 5.9, at the implementation level, normalized (non-dimensional) error measures were used. As with the
unnormalized case, one approximates the error within an iteration to behave according to
ðSðDtÞpÞK kr
Lþ1;1 � rLþ1;0k
krLþ1;0 � rLk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

E0

¼ kr
Lþ1;K � rLþ1;K�1k
krLþ1;K � rLk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

EK

; ð5:10Þ

where the normalized measures characterize the ratio of the iterative (staggering) error within a time-step to the difference
in solutions between time-steps. Since both krLþ1;0 � rLk � OðDtÞ and krLþ1;K � rLk � OðDtÞ are of the same order, the use of
normalized or unnormalized measures makes little difference in rates of convergence. However, the normalized measures
are preferred since they have a clearer interpretation.

Remark 2. We remark that the forces needed to compute terms in the coefficient of restitution e, for example Ein, Ejn and
Dij are obtained by using the most currently known values of the Wi’s during the iterative solution process. In other words,
the interaction forces are updated during the iterations, within a time-step, based on the most currently known positions of
the particles. This process includes checking whether kri � rjk 6 bi þ bj, which is a criteria for contact between particles.

Remark 3. For the fluid, notice that all of the contraction factors in Eq. (3.6) scale as Dt
h and Dt

h2 (classical stability terms).

Remark 4. An alternative and more severe way to measure the error is to define ‘‘violation ratios’’, i.e. measure of which
field is relatively more in error, compared to its corresponding tolerance, via ZK ¼

def
maxðzrK ; zhK ; ẑvK ; ẑhf KÞ where
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zrK ¼def ErK

TOLr
and zhK ¼def EhK

TOLh
ð5:11Þ

and

ẑvK ¼
def ÊvK

TOLv
and ẑhf K ¼

def ÊhK

TOLhf

ð5:12Þ

and then a minimum scaling factor UK ¼def
minð/rK ;/hK ; /̂vK ; /̂hf KÞ, where, for the particles

/rK ¼
def

TOLr

Er0

� � 1
pKd

ErK
Er0

� � 1
pK

0
B@

1
CA; /hK ¼

def

TOLh
Eh0

� � 1
pKd

EhK
Eh0

� � 1
pK

0
B@

1
CA ð5:13Þ

and for the fluid

/̂vK ¼
def

^TOLv

Êv0

� � 1
pKd

ÊvK

Êv0

� � 1
pK

0
B@

1
CA; /̂hf K ¼

def

^TOLh

Êh0

� � 1
pKd

Êhf K

Êhf 0

� � 1
pK

0
BBB@

1
CCCA: ð5:14Þ

However, in such an approach, if the individual field with the maximum error is used for time-step adaptivity, we would
need to specifically use the corresponding convergence exponent (p) for the selected field’s temporal discretization. If the
equations of dynamic equilibrium of the particles are the field chosen, then p = 2. If the equations of thermodynamic equi-
librium of the particles are the field chosen, then p = 1. If the equations of dynamic equilibrium of the fluid are the field
chosen, then p = 1. If the equations of thermodynamic equilibrium of the fluid are the field chosen, then p = 1. However,
this approach has some major drawbacks when many disparate fields are present. Specifically, when the maximum error
measure oscillates from field to field within a time-step or abruptly from time-step to time-step, convergence becomes quite
difficult. Using the combined metric (Eq. (5.8)) is more stable and, thus, preferred.

Remark 5. Crucial to the analysis is the observation that the convergence of such staggering schemes is generally
proportional to the time-step size. An illustrative semi-analytical example is provided in Appendix B.
6. A numerical example

As a model problem, we considered a cubical representative volume of a particle-laden fluid flow (Fig. 2). The classical
random sequential addition (RSA) algorithm was used to initially place non-overlapping spherical particles into the
domain of interest [90]. This algorithm was adequate for the volume fraction ranges of interest (under 30%), since the limit
of the method is on the order of 38%. To achieve higher volume fractions, there are a variety of more sophisticated meth-
Fig. 2. A representative volume element extracted from a flow.
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ods, such as those built upon the classical equilibrium-based Metropolis algorithm. For a detailed review of a variety of
such methods, see Torquato [85]. For much higher volume fractions, effectively packing (and ‘‘jamming’’) particles to the-
oretical limits (approximately 74%), a novel class of methods has recently been developed, based on simultaneous particle
flow and growth, by Torquato and coworkers (see, for example, Kansaal et al. [46] and Donev et al. [28–30]). This class of
methods was not employed in the present study, due to the relatively moderate volume fraction range of interest here, how-
ever, such methods appear to offer distinct computational advantages if extremely high volume fractions are desired.

Any particles that exited a boundary were given the same velocity (now incoming) on the opposite boundary. Periodicity
conditions were used to generate any numerical derivatives for finite difference stencils that extended beyond the boundary.
Clearly, under these conditions the group velocity of the particles will tend towards the velocity of the (‘‘background’’) fluid
specified (controlled) on the boundary.

A Boussinesq-type (perturbation from an ideal gas) relation, adequate to describe dense gases and fluids, was used for
the equation of state, stemming from

qf � q0ðh0; P 0Þ þ
oqf

oP f

				
h

DP f þ
oqf

ohf

				
P f

Dhf ; ð6:1Þ

where q0, h0, P0 are reference values, DP f ¼ P f � P 0 and Dhf ¼ hf � h0. We define the thermal expansion as

fh ¼
def � 1

qf

oqf

ohf

				
P f

¼ 1

V f

oV f

ohf

				
P f

ð6:2Þ

and the bulk (compressibility) modulus by

fcom ¼
def �V f

oP f

oV f

				
hf

¼ qf

oP f

oqf

				
hf

; ð6:3Þ

yielding the desired result

qf � q0 1� fhDhf þ
1

fcom

DP f

� �
; ð6:4Þ

leading to

P f � P 0 þ fcom

qf

q0

� 1þ fhDhf

� �
; ð6:5Þ

where OðfhÞ � 10�7=K and 105 Pa < OðfcomÞ < 1010 Pa. The viscosity is assumed to behave according to the well-known
relation

lf

lr

¼ e
c hr

hf
�1

� �
; ð6:6Þ

where lr is a reference viscosity, hr is a reference temperature and where c is a material constant. We introduce the follow-
ing (per unit mass2) decompositions for the key near-field parameters, for example for the force imparted on particle i by
particle j and vice-versa17

• a1ij ¼ a1mimj,
• a2ij ¼ a2mimj.

One should expect two primary trends:

• Larger particles are more massive and can impact one another without significant influence from the surrounding fluid.
In other words, the particles can ‘‘plow’’ through the fluid and make contact. This makes this situation more thermally
volatile, due to the resulting chemical release at contact.

• Smaller particles are more sensitive to the surrounding fluid, and the drag ameliorates the disparity in velocities, thus
minimizing the interparticle impact. Thus, these types of flows are less thermally sensitive.

Obviously, in such a model, the number of parameters, even though they are not ad hoc, is large. Thus, correspond-
ing parameter studies would be enormous. This is not the objective of this paper. Accordingly, we have taken nominal
17 Alternatively, if the near-fields are related to the amount of surface area, this scaling could be done per unit area.



Fig. 3. With near-fields (top to bottom and left to right): the dynamics of the particulate flow. The lengths of the arrows indicate the magnitude of each
particle’s velocity.
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parameter values that fall roughly in the middle of material data ranges to illustrate the basic approach. The parameters
selected for the simulations were as follows:18

• a (normalized) domain size of 1 m · 1 m · 1 m,
• 200 particles randomly distributed in the domain and all started from rest,
18 No gravitational effects were considered.
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• the particle radii randomly distributed between b ¼ 0:05ð1þ
0:25Þ m, this resulted in approximately 11% of the vol-
ume being occupied by the particles,

• an initial velocity of vf ¼ ð1 m=s;0 m=s;0 m=sÞ was assigned to the fluid, and periodic boundary conditions where used,
• the viscosity parameters were lr ¼ 0:05 N s=m2 and c = 5, for the equation of state (Boussinesq-type model), and the

same thermal relation is assumed for the bulk viscosity, namely, jf

jr
¼ e

c hr
hf
�1

� �
, jr ¼ 0:8lr,

19

• a uniform initial particle temperature of h ¼ 293:13 K was used,
• a uniform initial fluid interior temperature of hf ¼ 293:13 K was used, and these values served as the boundary condi-

tions for the domain,
• a particle heat capacity of C ¼ 1000 J=ðkg KÞ,
• a fluid heat capacity of Cf ¼ 2500 J=ðkg KÞ,
• a fluid conductivity of K f ¼ 1:0 J m2=ðs KÞ,
• a radiative particle emissivity of � ¼ 0:05 was chosen,
• the near-field parameters for the particles were a1 ¼ 0:1, a2 ¼ 0:01, b1 ¼ 1, b2 ¼ 2,
• the restitution impact coefficients were e� ¼ 0:1 (the lower bound), e0 ¼ 0:2, h� ¼ 3000 K (thermal sensitivity coeffi-

cient), v� ¼ 10 m=s,
• the coefficient of static friction was ls ¼ 0:5 and the coefficient of dynamic friction was ld ¼ 0:2,
• the reaction coefficient was n ¼ 109 J=m2 and the reaction impact parameter was I� ¼ 103 N,
• the heat-drag coefficient, cv ¼ 1,
• the convective heat transfer coefficient was hc ¼ 103 J=ðs m2 KÞ,
• a bulk fluid (compressibility) modulus fcom ¼ 106 Pa, the reference pressure P 0 ¼ 101; 300 Pa (1 atm), the reference den-

sity q0 ¼ 1000 kg=m3, reference temperature h0 ¼ 293:13 K and a thermal expansion coefficient, fh ¼ 10�7 ðKÞ�1,
• a particle density of q ¼ 2000 kg=m3.

The discretization parameters selected were:

• a 10� 10� 10 finite difference mesh (with a spacing of 0.1 m) for the numerical derivatives (on the order of the particle
size),

• a simulation time of one second,
• an initial time-step size of 10�6 s,
• an upper limit for the time-step size of 10�2 s,
• a lower limit for the time-step size of 10�12 s,
• a target number of internal fixed-point iterations of Kd ¼ 5,
• an (percentage) iterative (normalized) relative error tolerance within a time-step was set to TOL1 ¼ TOL2 ¼

TOL3 ¼ TOL4 ¼ 10�3.
7. Discussion of the results

For this system, the Reynolds number, based on the mean particle diameter and initial system parameters, was
Re ¼def q02bv0

l0
� 4010. The plots in Figs. 4 and 5 illustrate the system behavior with and without near-fields. There is signif-

icant heating due to interparticle collisions when near-fields are present. The presence of near-fields causes particle trajec-
tories to intersect, due to mutual attraction and repulsion, and for the particles to make contact frequently. In other words,
the particles can ‘‘plow’’ through the (compressible) fluid and contact one another. This makes this situation relatively
more thermally volatile, due to the resulting chemical release at contact, than cases without near-fields, where the fluid
dominates the motion of the particles relatively quickly, not allowing them to make contact. When no near-fields were pres-
ent, the thermal changes in the particles were negligible, as the plots indicate (Fig. 5). A sequence of system configurations
are shown in Fig. 3 for the case where near-fields are present. Referring to Table 1, the total number of time-steps needed
was 1176 with near-fields and 1341 without near-fields, leading to an average size step size of 8:505� 10�4 s with near-fields
and 7:458� 10�4 s without near-fields. The number of iterations needed per time-step was 6.978 with near-fields and 10.772
without near-fields. We note that while the target iteration limit was set to 5 iterations per time-step, the average value
taken for a successful time-step exceeds this number, due to the fact that the adaptive algorithm frequently would have
to ‘‘step back’’ during the time-step refinement process and restart the iterations with a smaller time-step. The step sizes
varied between approximately 4:8� 10�4

6 Dt 6 1:1� 10�3 s with near-fields and 4:8� 10�4
6 Dt 6 0:9� 10�3 s without

near-fields. In particular, it is important to note that, for the case with no near-fields, time-step adaptivity was important
19 In order to keep the analysis general, we do not enforce the Stokes’ condition, namely, jf ¼ 0.



Table 1
Statistics of the particle laden flow calculations

Near-field Time-steps Fixed-point iterations Iter/time-steps Time-step size (s)

Present 1176 8207 6.978 8:506� 10�4

Not present 1341 14,445 10.772 7:458� 10�4
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Fig. 4. With near-fields: The average velocity and temperature of the particles.
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Fig. 5. Without near-fields: The average velocity and temperature of the particles.
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throughout the simulation (Fig. 6). The near-field case’s computations converge more quickly. This appears to be due to
the fact that when the near-fields are not present, the individual particles have a bit more mobility and, thus, smaller time-
steps (slightly more computation) are needed to accurately capture their motion.
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Fig. 6. The time-step size variation. On the left, with near-fields and, on the right, without near-fields.
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8. Summary

This work developed a flexible and robust solution strategy to resolve strong multifield coupling between large numbers
of particles and a surrounding fluid. As a model problem, a large number of particles undergoing inelastic collisions and
simultaneous interparticle (non-local) near-field attraction/repulsion were considered. The particles were surrounded by a
continuous interstitial fluid which was assumed to obey the compressible Navier–Stokes equations. Thermal effects were
considered throughout the modeling and simulations. It was assumed that the particles were small enough that the effects
of their rotation with respect to their mass centers was unimportant and that any ‘‘spin’’ of the particles was small enough
to neglect lift forces that could arise from the interaction with the surrounding fluid. However, the particle–fluid system was
strongly coupled due to the drag-forces induced by the fluid on the particles and vice-versa, as well as the generation of heat
due to the drag-forces, thermal softening of the particles and the thermal dependency of the fluid viscosity. Because the
coupling of the various particle and fluid fields can dramatically change over the course of a flow process, the focus of this
work was on the development of an implicit ‘‘staggering’’ solution scheme, whereby the time-steps were adaptively adjusted
to control the error associated with the incomplete resolution of the coupled interaction between the various solid partic-
ulate and continuum fluid fields. The approach is straightforward and can be easily incorporated within any standard com-
putational fluid mechanics code based on finite difference, finite element or finite volume discretization. Furthermore, the
presented staggering technique, which is designed to resolve the multifield coupling between particles and the surrounding
fluid, can used in a complementary way with other compatible approaches, for example those developed in the extensive
works of Elghobashi and coworkers dealing with particle-laden and bubble-laden fluids [35,1,2,31]. Also, as mentioned ear-
lier, improved descriptions of the fluid–particle interaction can possibly be achieved by using discrete network approxima-
tions such as those of Berlyand and Panchenko [15,16].

In closing, it is important to mention related particle-laden flow problems arising from the analysis of biological flu-
ids. One application where problems of this type are encountered is in the study of atherosclerotic plaque growth. For
example, a dominant school of thought attributes the inception of atherosclerotic plaque growth to a relatively high con-
centration of microscale suspensions (low-density lipoprotein (LDL) particles) in the diseased blood. The stages in the
overall atherosclerotic plaque process appear to be (a) adhesion of monocytes (essentially, larger particulate suspensions)
to the endothelial surface, which is controlled by the adhesion molecules stimulated by the excess LDL, the oxygen con-
tent and the intensity of the blood flow; (b) penetration of the monocytes into the intima and subsequent inflammation
of the tissue; and (c) rupture of the plaque accompanied by some degree of thrombus formation or even subsequent
occlusive thrombosis. Plaques with high risk of rupture are termed vulnerable, (see, for example, Fuster [37]). Currently,
no adequate, robust, diagnostic strategy for the identification of vulnerable plaques is available. Surveys of the current
thinking in the medical community pertaining to the growth and rupture of atherosclerotic plaques are provided in Shah
[79], van der Wal [87], Chyu [22] and Libby [55–58], Richardson et al. [75] and Loree et al. [60], and Davies et al. [24],
among others. For numerical and theoretical fluid flow analyses we refer the reader to Stroud et al. [81,82], Berger and
Jou [14] and Jou and Berger [45]. For experimentally-oriented physiological flow studies of atherosclerotic carotid bifur-
cations and related systems, see Bale-Glickman et al. [4,5]. Notably, Bale-Glickman et al. [4,5] have constructed flow
models which replicate the lumen of plaques excised intact from patients with severe atherosclerosis, which have shown
that the complex internal geometry of the diseased artery, combined with the pulsatile input flows, gives exceedingly
complex flow patterns. They have shown that the flows are highly three-dimensional and chaotic, with details varying
from cycle to cycle. In particular, the vorticity and streamline maps confirm the highly complex and three-dimensional
nature of the flow. The mechanisms involved in the initial stages of the disease, in particular stage (a), have not been
extensively studied, although some simple semi-analytical qualitative studies have been carried out recently in Zohdi
et al. [99] and Zohdi [100]. Clearly, the subsequent flow dynamics of the thrombus ejected by plaque rupture, and frag-
ments thereof, comprised of aggregates of particles, is of interest in determining the chances for stroke. The particle/fluid
modeling techniques developed in the present work are currently being applied to the mentioned biological problems by
the author.

Appendix A. Near-field potentials

In order to motivate the concept of stability for such systems we refer to the classical theory of conservative forces.
Here we summarize analyses given in Zohdi [96,98]. A force field Wnf is said to be conservative if and only if there exists
a continuously differentiable scalar field V such that Wnf ¼ �rV . If the force field is conservative, with potential V,
then a necessary and sufficient condition for a particle to be in equilibrium at that point is that Wnf ¼ �rV ¼ 0, in
other words oV

ox1
¼ 0, oV

ox2
¼ 0 and oV

ox3
¼ 0. Forces acting on a particle that are in the direction of a vector connecting

the center of the particle and a point, perhaps the center of another particle, and whose magnitude depend only on
the distance between the particle and the point in question, are called central forces. The forces have the following
form
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Wnf ¼ �Cðkr� r0kÞ
r� r0

kr� r0k
¼ Cðkr� r0kÞn; ðA:1Þ

where r is the position of the particle, where r0 is the position of the point of attraction/repulsion. The normal direction,
connecting the two points, is given by n ¼ r0�r

kr�r0k
. The central force is one of attraction if Cðkr� r0kÞ > 0 and one of repul-

sion if Cðkr� r0kÞ < 0. We remark that a central force field is always conservative, since r�Wnf ¼ 0. For example, con-

sider V ¼ a1kr�r0k�b1þ1

�b1þ1
� a2kr�r0k�b2þ1

�b2þ1
, where all of the parameters, a’s and b’s, are non-negative. The gradient yields

�rV ¼ Wnf ¼ ða1kr� r0k�b1 � a2kr� r0k�b2Þn, which is the form introduced previously. If a particle which is displaced
slightly from an equilibrium point tends to return to that point, then we call that point a point of stability or stable point
and the equilibrium is said to be stable. Otherwise we say that the point is one of instability and the equilibrium is unstable.
A necessary and sufficient condition that an equilibrium point be one of stability is that the potential V at the point be a min-

imum. The general condition by which a potential is stable for the multidimensional case can be determined by studying the
properties of the Hessian,

½H� ¼def

o2V
ox1ox1

o2V
ox1ox2

o2V
ox1ox3

o2V
ox2ox1

o2V
ox2ox2

o2V
ox2ox3

o2V
ox3ox1

o2V
ox3ox2

o2V
ox3ox3

2
6664

3
7775; ðA:2Þ

around an equilibrium point. A sufficient condition for V to attain a minimum at an equilibrium point is that the Hessian
be positive definite (which implies that V is locally convex). For more details see Hale and Kocak [42]. The central force
potential chosen in this work is near-field stable for motion in the normal direction, i.e. the line connecting the centers of
the particles. For disturbances in directions orthogonal to the normal direction, the potential is neutrally stable, i.e. the
Hessian’s determinant is zero, thus indicating that the potential does not change for such perturbations. Thus, in order
to determine stable parameter combinations, consider a potential function for a single particle, in one-dimensional motion,
representing the motion in the normal direction, attracted and repulsed from a point r0 measured by the coordinate r,

V ¼ a1

�b1 þ 1
jr � r0j�b1þ1 � a2

�b2 þ 1
jr � r0j�b2þ1

; ðA:3Þ

whose derivative produces the form of interaction forces introduced earlier:

Wnf ¼ � oV
or
¼ a1jr � r0j�b1 � a2jr � r0j�b2

� �
n; ðA:4Þ

where n ¼ r0�r
jr�r0j

. We remark that the motion in the normal direction is relevant for central forces of this type. For stability,
we require

o2V
or2
¼ �a1b1jr � r0j�b1�1 þ a2b2jr � r0j�b2�1

> 0: ðA:5Þ

A static equilibrium point, r ¼ re, can be calculated from Wnfðjre � r0jÞ ¼ �a1jre � r0j�b1 þ a2jre � r0j�b2 ¼ 0, which implies

jre � r0j ¼
a2

a1

� � 1
�b1þb2

: ðA:6Þ

Inserting Eq. (A.6) into Eq. (A.5) yields a restriction for stability, b2

b1
> 1.

One can consider the convexity requirement on the potential to insure that the perturbed motion to a dynamical state
remain small. Consider the dynamics of a particle in the normal direction, with a perturbation, ~r ¼ r þ dr, m€~r ¼ Wnfð~rÞ,
where r is the perturbation-free position vector of the particle, governed by m€r ¼ WnfðrÞ. Taking the difference between
these two differential equations yields

m €dr ¼ Wnfð~rÞ �WnfðrÞ � oWnf

or
j~r¼rdr þ � � � ) m €dr � oWnf

or
j~r¼rdr � 0: ðA:7Þ

If oWnf ðrÞ
or is positive, there will be exponential growth of the perturbation, while if oWnf ðrÞ

or is negative, there will be oscillatory
behavior of the perturbation. Thus, since � o2V

or2 ¼ oWnf

or , we have

m €dr þ o2V
or2
j~r¼rdr � 0: ðA:8Þ

The convexity of the potential simply corresponds to the positiveness of the stiffness at r. In addition to the instabilities
about an equilibrium point, the point at which the potential changes from a convex to concave character is a source of
long range instability. For motion in the normal direction, we have
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o2V
or2
¼ �b1a1jr � r0j�b1�1 þ b2a2jr � r0j�b2�1 ¼ 0; ðA:9Þ

thus leading to

jr � r0j ¼
b2a2

b1a1

� � 1
�b1þb2

¼ d�: ðA:10Þ

Thus, the preceding analysis indicates that, for the three-dimensional case, the interaction should be cut-off beyond
kri � rjk ¼ d� to avoid long-range (central-force) instabilities.

Appendix B. A semi-analytical example of staggering schemes

To illustrate concepts, as an example, consider the coupling of two first-order equations and one second-order equation

a _w1 þ w2 ¼ 0; b _w2 þ w3 ¼ 0; c €w3 þ w1 ¼ 0: ðB:1Þ
When the equations are discretized in time, for example with a backward Euler scheme, we obtain

_w1
Lþ1 ¼ wLþ1

1 � wL
1

Dt
; _w2

Lþ1 ¼ wLþ1
2 � wL

2

Dt
; €w3

Lþ1 ¼ wLþ1
3 � 2wL

3 þ wL�1
3

ðDtÞ2
; ðB:2Þ

one obtains the following coupled system:

1 Dt
a 0

0 1 Dt
b

ðDtÞ2
c 0 1

2
664

3
775

wLþ1
1

wLþ1
2

wLþ1
3

8><
>:

9>=
>; ¼

wL
1

wL
2

2wL
3 � wL�1

3

8><
>:

9>=
>;: ðB:3Þ

For a recursive staggering scheme of Jacobi-type, where the updates are made only after one complete iteration, considered
here only for algebraic simplicity, one has20

1 0 0

0 1 0

0 0 1

2
64

3
75

wLþ1;K
1

wLþ1;K
2

wLþ1;K
3

8><
>:

9>=
>; ¼

wL
1

wL
2

2wL
3 � wL�1

3

8><
>:

9>=
>;�

Dt
a wLþ1;K�1

1

Dt
b wLþ1;K�1

2

ðDtÞ2
c wLþ1;K�1

3

8>><
>>:

9>>=
>>;: ðB:4Þ

Rewriting this in terms of a standard ‘‘fixed-point’’ form, GðwLþ1;K�1Þ þR ¼ wLþ1;K , yields

0 Dt
a 0

0 0 Dt
b

ðDtÞ2
c 0 0

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼def

G

wLþ1;K�1
1

wLþ1;K�1
2

wLþ1;K�1
3

8><
>:

9>=
>;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼def
wLþ1;K�1

þ
wL

1

wL
2

2wL
3 � wL�1

3

8><
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9>=
>;|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼def
R

¼
wLþ1;K

1

wLþ1;K
2

wLþ1;K
3

8><
>:

9>=
>;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼def
wLþ1;K

:
ðB:5Þ

The eigenvalues of G are k3 ¼ ðDtÞ4
abc and, hence, for convergence we must have

jmax kj ¼ ðDtÞ4

abc

					
					

1
3

< 1: ðB:6Þ

One sees that the spectral radius of the staggering operator grows quasilinearly with the time-step size, specifically, super-
linearly as ðDtÞ

4
3.

Generally speaking, if the recursive process is not employed (an explicit scheme), the staggering error can accumulate
relatively rapidly. However, an overkill approach involving very small time-steps, smaller than needed to control the discret-

ization error, simply to suppress a non-recursive staggering process error, is computationally inefficient. Therefore, the objec-
tive of the next section is to develop a strategy to adaptively adjust, in fact maximize, the choice of the time-step size to
control the staggering error, while simultaneously staying below a critical time-step size needed to control the discretization
error. An important related issue is to simultaneously minimize the computational effort involved. The number of times the
20 A Gauss–Seidel-type approach would involve using the most current iterate. Typically, under very general conditions, if the Jacobi method converges,
the Gauss–Seidel method converges at a faster rate, while if the Jacobi method diverges, the Gauss–Seidel method diverges at a faster rate. For example,
see Ames [3] for details. The Jacobi method is easier to address theoretically, thus it is used for proof of convergence, and the Gauss–Seidel method at the
implementation level.
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multifield system is solved, as opposed to time-steps, is taken as the measure of computational effort, since within a time-
step, many multifield system re-solves can take place.

The result in Eq. (B.6) provides a rough guide for the selection of the exponent (pÞ for the overall system (when many
different types of equations are present). The exponent p is approximately the sum of the product of each field equation that
contains a numerical time derivative and the order of the corresponding time differentiation (first order, second order, etc.),
divided by the sum of the number of equations using numerical time derivative in the system. Explicitly,

p �
PN

i¼1Oi

N
; ðB:7Þ

where N is number of field equations where a numerical derivative was used, and Oi is the order of the time differentiation
(first order, second order, etc.) of the individual field equation i. Clearly, p has the following range, 1 6 p 6 2, for a col-
lection of first and second order equations.
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