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Abstract

The tremendous increase in accessible, powerful, desktop computers has raised the possibility of rapid high speed simulation of the
response of fibrous biological tissue using networks of fibers to represent the load bearing component of such materials. The purpose of
this paper is to present a relatively simple, robust, modeling and computational framework, based on fiber networks, which can be imple-
mented with minimal effort by researchers in the biomechanics community, and which is relatively easy to tailor to specific applications.
The advantages of such a fiber network approach are (1) the simplicity of the constitutive laws at the fiber level, for example relaxed one-
dimensional Fung material laws, (2) the ability to easily incorporate effects such as fiber damage and rupture and (3) the amenability of
the model to extremely rapid numerical simulation.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fibrous material represents the load bearing component
of many types of soft biological tissue. For overviews of a
wide variety of soft tissue continuum models, see the exten-
sive works of Holzapfel and coworkers [20–24] and Hum-
phrey and coworkers [25–35]. Models which explicitly
account for the presence of fibers in biological tissue date
back, at least, to Lanir [36], who formulated continuum
models based on the existence of fiber families. For a
review of Lanir-type models, as well as other classes of bio-
logical constitutive models, see the review of Sacks and Sun
[47].1 Below the (homogenized) continuum scale, such
material exhibits a microstructure comprised of fibers
embedded within a soft tissue matrix. At the homogenized
continuum scale, this frequently results in macroscopically
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1 Also see the paper of Costa et al. [9], among numerous others.
anisotropic material behavior, which is difficult to properly
mathematically formulate at finite strains, in particular if
anisotropic damage and rupture effects are to be taken into
account. The specific type of global anisotropy is irrelevant
to the solution technique to be presented, since it starts at a
scale where the fibers are treated as a network of inter-
connected links. The purpose of this work is to present a

relatively simple, robust, modeling and computational frame-

work, based on fiber networks, which usually comprise the
load bearing component of many types of biological tissue,
which can be implemented with minimal effort by research-
ers in the field, and which is relatively easy to tailor to spe-
cific applications. The advantages of such a fiber network
approach are that the constitutive laws at the fiber level
can be represented simple one-dimensional constitutive
laws and that damage and rupture of these fibers is easy
to characterize and rapidly computable.

We consider a model problem structure comprised of an
initially undeformed surface network of one-dimensional
fibers (Fig. 1). The structure is capable deforming in three
dimensions (in and out of the initial plane), in response to
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Fig. 1. An idealized fiber network with heterogeneous fibers.

2 The well-known difficulties and ambiguities with the three-dimensional
Fung model are irrelevant for this one-dimensional analysis.
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loading on its surface. The fibers are joined at the nodes (as
pinned-joints), in other words, they are sutured together at
those locations to form a network. While the structure is
relatively simple, compared with real biological tissue, the
primary purpose here is to illustrate how the approach
works, since it is quite flexible, and adaptable to specific
applications. In the present analysis, the soft web-tissue
contribution to the response is considered negligible rela-
tive to that of the relatively stiff load carrying fibers. By
employing enough of these simple structural elements,
one can build an entire macroscale sheet of fibrous tissue,
as shown in Fig. 1.

We shall consider scenarios where we may assume that,
for load bearing soft tissue, the compressive response is of
minor interest. A type of modeling approach that is ideal to
describe such situations is the relaxed theory of perfectly
flexible solids, which entails enforcing a zero stress state
for any compressive strains. Early mathematical analysis
of such models can be credited to Pipkin [44] who consid-
ered a minimizing sequence for an associated variational
problem, and showed that such sequences exhibit structure
similar to that observed in wrinkling of thin elastic sheets.
Several researchers have adopted similar approaches for
the elastostatic analysis of structural fabric; for example
Buchholdt et al. [4], Pangiotopoulos [42], Bufler and Ngu-
yen-Tuong [5] and Cannarozzi [6,7]. Notable is the work of
Steigmann and coworkers [50,17–19,1,2], who developed a
series of theoretical results and elastostatic solution tech-
niques based on pseudo-dynamic relaxation methods, sim-
ilar to those found in Papadrakakis [43]. In particular,
Steigmann and coworkers have shown that a necessary
condition for the existence of energy minimizers in elasto-
statics is for the structural members to carry no load in
compression. This model has served as a foundation for
more elaborate models describing rupture of ballistic fabric
shielding in Zohdi and Steigmann [61], Zohdi [62] and
Zohdi and Powell [63], of which the present approach
builds upon.
2. Modeling individual biological fibers

The starting point for the analysis is a purely one-dimen-

sional microscale description of the tensile deformation of a
fiber, employing the mentioned relaxed methodology for
each fiber. Although the upcoming analysis is general, for
brevity, we employ a classical one-dimensional Fung mate-
rial model for the fibers [13–15].2 The stored energy of a
single Fung fiber is given by

W ¼ cðeQ � 1Þ; ð2:1Þ
where Q ¼ 1

2
HE2, H and c are material constants, E ¼def

1
2
ðC � 1Þ is the Green–Lagrange strain, C ¼def F 2 is the right

Cauchy–Green strain, F ¼ dx
dX is the deformation gradient,

X are referential coordinates and x are current coordinates
along the axis of the fiber. The exponential term phenom-
enologically describes a stiffening effect, due to a progres-
sive reduction in fibrous microscale ‘‘slack’’, which is
prevalent in many types biological tissue. The second
Piola–Kirchhoff stress is given by

S ¼ oW
oE
¼ c

oQ
oE

eQ ¼ cHEe
HE2

2 ; ð2:2Þ

and the tangent stiffness is

o
2W

oE2
¼ ceQ oQ

oE

� �2

þ ceQ o
2Q

oE2
¼ cHeQð1þ HE2Þ: ð2:3Þ

We remark that, during the calculations, it is convenient to
work with quantities expressed in terms of the stretch ratio,
U ¼ L

Lo
, where L is the deformed length of the fiber, Lo is its

original length and, by virtue of a polar-decomposition,
E ¼ 1

2
ðU 2 � 1Þ. For this relaxed one-dimensional model,

since the Cauchy stress, r, is related to the second Piola–
Kirchhoff stress by r ¼ 1

J F 2S, where J is the Jacobian of
F, we need only be concerned with F P 1, thus, J ¼ F ,
and consequently, r ¼ FS.

Remark 1. This relaxed (tensile-strain only) one-dimen-
sional model is trivially polyconvex, which is a desirable
(sufficient) property from a mathematical existence theory
standpoint. Recall, a general three-dimensional stored
energy function is polyconvex if, for two deformation
gradients, F and G
W ðhðF; cof F; det FÞ þ ð1� hÞðG ; cof G ; det GÞÞ
6 hW ðF; cof F; det FÞ þ ð1� hÞW ðG ; cof G ; det GÞ;

ð2:4Þ

where cof F ¼ F�T det F and 0 6 h 6 1. In one dimension,
for tensile states only, the tensorial quantities take on the
form F ¼ F , cof F ¼ 1 and det F ¼ F . Thus, for the one-
dimensional relaxed theory, convexity of W(F) in F is
equivalent to polyconvexity. By computing two derivatives
of W(F), and enforcing o2W

oF 2 > 0 for convexity, we obtain



2974 T.I. Zohdi / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2972–2980
o2W

oF 2
¼ ceQ oQ

oF

� �2

þ ceQ o2Q

oF 2
> 0; ð2:5Þ

which is valid for positive values of c and H or if both con-
stants are negative. The canonical choice is that they are
both positive, which we adopt. We note that the tangent
stiffness can be represented as

o2W

oE2
¼ o2W

oF 2
F �2 � oW

oF
F �3; ð2:6Þ

thus illustrating that polyconvexity and positive-definite-
ness of the tangent stiffness are clearly different conditions.

Remark 2. While it is generally not true that the compres-
sive response of fibrous tissues is always of little interest, in
this paper we formulate only a compression-free model,
primarily because we are interested in tensile tearing type
failure of soft tissue. However, it is important to note that,
for example, cartilage researchers believe that the difference
between the tensile and compressive properties of that
fibrous tissue are the key to understanding its response to
dynamic loading. For example, one of the more important
problems in tendon mechanics is understanding the ten-
don-to-bone insertion (especially its repair), which most
surgeons believe places the tendon under compression.
The natural loading state of pressurized structures such
as arteries and the heart places the tissue in radial compres-
sion, and this is sometimes important to the mechanics
(especially as it relates to wall thickening in the heart).
Thus, there are clearly many biomechanics applications
where compression can play a role, and the method devel-
oped can be extended to those regimes with relatively
minor modifications.
3. Fiber rupture

The simplest approach to describe failure of a fiber is to
check whether a critical stretch has been attained,
UðtÞP U crit. If this condition is met, then the fiber is
deemed inactive. However, it is more realistic to have the
fiber gradually rupture. In order to track the progressive
damage for the Ith fiber, a single damage variable, aI, is
used. The damage variable aI can, for example, represent
the fraction of smaller scale fibrils that are not ruptured,
within the Ith fiber.3 Thus, for a fiber that is undamaged,
aI ¼ 1, while for an fiber that is completely damaged,
aI ¼ 0. Probably the simplest damage representation is,
with aIðt ¼ 0Þ ¼ 1

aIðtÞ ¼ min aIð0 6 t� < tÞ; e
�k

UðtÞ�Ucrit
Ucrit

� �� � !
; ð3:1Þ

where U(t) is the stretch of the fiber at time t, and where
0 6 k is a rate parameter. The above relation indicates that
3 This topic, which is relevant in a multiscale setting, has been explored
in depth in Zohdi and Steigmann [61] and Zohdi and Powell [63].
damage is irreversible, i.e. aI is a monotonically decreasing
function. As k ! 1, the type of failure tends towards
sudden rupture, while as k ! 0, then there is no damage
generated.

4. Simulation of tissue dynamics

A natural way to simulate the dynamics of such tissue is
to consider a lumped mass model, where the lumped
masses are located at the suture (criss-cross) points (Fig. 1).

4.1. Lumped mass representation

The connection points are pinned-joints. For each
lumped mass, dynamic equilibrium is computed via

m€ri ¼ wtot
i|{z}

total

¼ wext
i|{z}

applied forces

þ
X4

I¼1
wiI|fflfflfflfflffl{zfflfflfflfflffl}

surrounding fibers

ð4:1Þ

for i ¼ 1; 2; . . . ;N , where N is the number of lumped
masses (nodes), where the summed four forces (wiI ) are
the axial contributions of the four fiber intersecting at node
i (Fig. 1), where wext

i is the applied external force contribu-
tion and where m is the mass of a single lumped mass node,
i.e. the total tissue mass divided by the total number of
nodes. To determine the forces from the fibers acting on
a lumped mass, one simply computes the product of the
Cauchy stress and the cross-sectional area. Accordingly,
the contribution of the Ith fiber to the ith lumped mass is
wiI ¼ SIU IA0aiI (A0 is the cross-sectional area of fiber),
where the unit axial fiber direction is given by
aiI ¼

rþI �r�I
krþI �r�I k

, where rþI denotes the endpoint not in contact

with the lumped mass and r�I denotes the endpoint in con-
tact with the lumped mass (Fig. 1).4 Clearly, wiI is a func-
tion of ri. In order to determine the deformation and
damaged state of the fibers, the nodal positions of the net-
work must be determined. In order to handle a system such
as that described in Eq. (4.1), which is coupled to Eq. (3.1),
we develop an iterative fixed-point scheme next.

4.2. Temporal discretization and adaptivity

Implicit time-stepping methods, with time step size
adaptivity, built on approaches found in Zohdi [54–58],
will be used throughout the upcoming analysis. Accord-
ingly, after time discretization of the acceleration term in
the equations of motion (Eq. (4.1)) for a lumped mass:

€rLþ1
i � rLþ1

i � 2rL
i þ rL�1

i

ðDtÞ2
; ð4:2Þ

where, for brevity, we denote rLþ1
i ¼def

riðt þ DtÞ (L is a time
step counter), rL

i ¼
def

riðtÞ, etc., one can arrive at the following
abstract form, for the entire system:

AðrLþ1Þ ¼F: ð4:3Þ
4 k � k indicates the Euclidean norm in R3.
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It is convenient to write

AðrLþ1Þ �F ¼ GðrLþ1Þ � rLþ1 þ E ¼ 0; ð4:4Þ
where E is a remainder term which does not depend on the
solution, i.e. E 6¼ EðrLþ1Þ. A straightforward iterative
scheme can be written as

rLþ1;K ¼ GðrLþ1;K�1Þ þ E; ð4:5Þ
where K ¼ 1; 2; 3; . . . is the index of iteration within time
step Lþ 1. The convergence of such a scheme is dependent
on the behavior of G. Namely, a sufficient condition for
convergence is that G is a contraction mapping for all
rLþ1;K , K ¼ 1; 2; 3 . . . In order to investigate this further,
we define the error as

-Lþ1;K ¼ rLþ1;K � rLþ1: ð4:6Þ
A necessary restriction for convergence is iterative self con-
sistency, i.e. the exact solution must be represented by the
scheme

GðrLþ1Þ þ E ¼ rLþ1: ð4:7Þ
Enforcing this restriction, a sufficient condition for conver-
gence is the existence of a contraction mapping

k-Lþ1;Kk ¼ krLþ1;K � rLþ1k
¼ kGðrLþ1;K�1Þ � GðrLþ1Þk
6 gLþ1;KkrLþ1;K�1 � rLþ1k; ð4:8Þ

where, if gLþ1;K < 1 for each iteration K, then -Lþ1;K ! 0
for any arbitrary starting value rLþ1;K¼0 as K !1. The
type of contraction condition discussed is sufficient, but
not necessary, for convergence. In order to control conver-
gence, we modify the discretization of the acceleration
term5:

€rLþ1 � _rLþ1 � _rL

Dt
�

rLþ1�rL

Dt � _rL

Dt
� rLþ1 � rL

Dt2
� _rL

Dt
: ð4:9Þ

Inserting this into m€r ¼ WtotðrÞ leads to

rLþ1;K � Dt2

m
ðWtotðrLþ1;K�1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GðrLþ1;K�1Þ

þ ðrL þ Dt_rLÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
E

; ð4:10Þ

whose convergence is restricted by g / EIGðGÞ / Dt2

m .
Therefore, we see that the eigenvalues of G are (1) directly
dependent on the strength of the interaction forces, (2) in-
versely proportional to the mass and (3) directly propor-
tional to ðDtÞ2. Therefore, if convergence is slow within a
time step, the time step size, which is adjustable, can be re-
duced by an appropriate amount to increase the rate of
convergence. Thus, decreasing the time step size improves
the convergence, however, we want to simultaneously max-
imize the time step sizes to decrease overall computing
time, while still meeting an error tolerance. In order to
achieve this goal, we follow an approach found in Zohdi
5 This collapses to a stencil of €rLþ1 ¼ rLþ1�2rLþrL�1

ðDtÞ2 , when the time step size
is uniform.
[54–58] originally developed for continuum thermo-chemi-
cal multifield problems in which (1) one approximates
gLþ1;K � cðDtÞp (c is a constant) and (2) one approximates
the error within an iteration to behave according to

ðcðDtÞpÞKk-Lþ1;0k ¼ k-Lþ1;Kk; K ¼ 1; 2; . . . ; ð4:11Þ

where k-Lþ1;0k is the initial norm of the iterative error and
c is a function intrinsic to the system.6 Our goal is to meet
an error tolerance in exactly a preset number of iterations.
In the definition of the error, since the ‘‘true’’ solution at a
time step, rLþ1, is unknown, we use the most current value
of the solution, rL;K , thus the error is to be interpreted as
the relative error. To this end, one writes this in the follow-
ing approximate form:

ðcðDttolÞpÞKdk-Lþ1;0k ¼ TOL; ð4:12Þ

where TOL is a tolerance and where Kd is the number of
desired iterations.7 If the error tolerance is not met in the
desired number of iterations, the contraction constant
gLþ1;K is too large. Accordingly, one can solve for a new
smaller step size, under the assumption that c is constant:

Dttol ¼ Dt
TOL
k-Lþ1;0k

� � 1
pKd

k-Lþ1;Kk
k-Lþ1;0k

� � 1
pK

0
B@

1
CA: ð4:13Þ

The assumption that c is constant is not critical, since the
time steps are to be recursively refined and unrefined
repeatedly. Clearly, the expression in Eq. (4.13) can also
be used for time step enlargement, if convergence is met
in less than Kd iterations. Classical solution methods re-
quire OðN 3Þ operations, whereas iterative schemes, such
as the one presented, typically require order Nq, with
1 6 q 6 2. For details see Axelsson [3]. Also, such solvers
are highly advantageous since solutions to previous time
steps can be used as the first guess to accelerate the solution
procedure. We note that time step size adaptivity is para-
mount, since the tissue’s dynamics can dramatically change
over the course of time, requiring radically different time
step sizes for a preset level of accuracy. However, one must
respect an upper bound dictated by the discretization error,
i.e. Dt 6 Dtlim.

A recursive iterative scheme of Jacobi-type, where the
updates are made only after one complete iteration, was
presented only for algebraic simplicity. The Jacobi method
is easier to address theoretically, while the Gauss–Seidel
type method, which involves immediately using the most
current values, when they become available, is usually used
at the implementation level. As is well known, under rela-
tively general conditions, if the Jacobi method converges,
the Gauss–Seidel method converges at a faster rate, while
if the Jacobi method diverges, the Gauss–Seidel method
diverges at a faster rate. For example, see Axelsson [3].
6 For the class of problems under consideration, due to the quadratic
dependency on Dt, p � 2.

7 Typically, Kd is chosen to be between five to ten iterations.
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An implementation of the overall (Gauss–Siedel) process,
whose goal to determine the dynamic equilibrium for all
of the (coupled) nodes, and to deliver solutions where the
iterative consistency error is controlled and the temporal
discretization accuracy dictates the upper limits on the time
step size (Dtlim), is as follows:
: ð4:14Þ
Remark 1. At the implementation level in Box (4.14),
normalized (nondimensional) error measures were used. As
with the unnormalized case, one approximates the error
within an iteration to behave according to
ðcðDtÞpÞK kr
Lþ1;1 � rLþ1;0k
krLþ1;0 � rLk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

-0

¼ kr
Lþ1;K � rLþ1;K�1k
krLþ1;K � rLk|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

-K

; K ¼ 2; . . .

ð4:15Þ
where the normalized measures characterize the ratio of the
iterative error within a time step to the difference in solu-
tions between time steps. Since both krLþ1;0 � rLk ¼ OðDtÞ
and krLþ1;K � rLk ¼ OðDtÞ the approach has roughly the
same rates of convergence, and the adaptive scheme re-
mains the same. The normalized measures are preferred
since they have a clear meaning.

Remark 2. The use of pinned-joints, i.e. not allowing
moments at each node, greatly speeds up the computation
in this approach. Bending can be taken into account, and
adds a degree of complexity that may be warranted in
certain applications. It is still rather unclear exactly
how, for example, collagen fibers in a network are con-
nected to one another and the degree to which those
connections may or may not support moments. Probably,
there are situations where the adopted simplification
could be adequate, and others where it is not. Also, as
mentioned previously, we ignore buckling phenomena
and consider cases where compressive stresses are of
somewhat less importance than tensile states. However,
the objective of this paper is simply to illustrate the main
modeling and solution techniques, without overly compli-
cating issues. In other words, this model and solution
technique serves as a starting point for more in-depth
analyses.
5. Numerical simulation: pressurized loading

As an idealized model problem, we consider a planar
rectangular sheet, composed of the fiber network, clamped
on all four edges. We consider gradually increasing forces
due to pressure loading underneath the tissue, for each
node, of the form:

F ¼ f0D2eqt

N
; ð5:1Þ

where f0 is a pressure force constant, D is the length of a
side of the square (D� D) exterior membrane boundary,
q is a loading rate parameter and where N is the total num-
ber of nodes. The unit normal at a node is computed by
taking the cross-product of the vectors connecting the
nodes before and after the node in question, and normaliz-
ing the result by the magnitude. The pressure is then pro-
jected onto this normal, n. Thus, this is live loading, since
each nodal n is a function of the deformation. In order
to illustrate the robustness of the approach, the tissue
was given some heterogeneity from fiber to fiber: a 50%
variation from a mean overall value of the material con-
stant c for the fibers (Fig. 1). Also, an initially softened
elliptical region was placed slightly off center in the tissue
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Fig. 2. Starting from the top, left to right: Successive frames of the pressurized loading leading to rupture. The graphics indicate the average damage in the
surrounding fibers.
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(Fig. 2). A 50� 50 network was used. The specific param-
eters employed were:

• The initial radii of the fibers were r0 ¼ 10�5 m.
• The dimensions of the domain were 0:025 m� 0:025 m.
• The starting time step value, Dt ¼ 0:005 s.
• The iterative stopping tolerance, TOLr ¼ 0:001.
• The total simulation time, T ¼ 10 s.
• The desired number of iterations, Kd ¼ 20.
• The upper bound on the time step size, Dtlim ¼ 0:01 s.
• The initial pressure, f0 ¼ 0:00001 Pa.
• The pressure rate, q ¼ 1:0.
• The damage rate, k ¼ 1.
• The critical stretch, U crit ¼ 1:25.
• The Fung material parameters were c ¼ ð1� 0:5Þ�

105 Pa and H ¼ 10�3.
• The first Fung material parameter in the weakened

elliptical region was one-hundredth of the nominal;
c ¼ ð1� 0:5Þ � 104 Pa (H was the same).

• The major radius of the elliptical softened region was
0.005 m, while the minor radius of the elliptical softened
region was 0.0025 m.
As Fig. 3 indicates, it takes some time for the critical
stretch to be met before damage starts to occur. Thus, in
the beginning, the time step sizes are enlarged, automati-
cally by the algorithm, until the (finite difference) discreti-
zation error upper limit (set to Dtlim ¼ 0:01) was met.
Thereafter, when damage initiates, inhomogeneously
(Fig. 2), the steps are refined and unrefined to meet the iter-
ative error tolerance. At this stage in the deformation, the
iterative error tolerance dictates time step sizes which are
required, by the adaptive algorithm, to be smaller than
the step-size dictated by the discretization limit. Clearly,
the method can handle extraordinarily large, inelastic,
deformations that would be difficult to formulate with an
anisotropic continuum theory, and an accompanying finite
element discretization. The total simulation time was on
the order of 45 s on a standard 2.33 GHz laptop.

Remark. The model presented is flexible enough to capture
static or dynamic loading. We remark that although
usually quasistatic loading with time-varying boundary
conditions are appropriate for most biomechanical appli-
cations, there are cases, for example blunt trauma-type
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Fig. 3. Left: The overall damage, haiX ¼
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loading where dynamic loading is important. Clearly, if the
inertial terms are made small, by allowing m ! 0, the
response will resemble a quasistatic solution, if that is
desired. As mentioned previously, this type of approach is
sometimes referred to as a psuedo-dynamical solution
technique to solve quasistatic problems [50,17–19,1,2,43].
8 The system presented in this paper can be considered a relatively
simple coupled system, coupling equilibrium and damage equations.
6. Summary and future work

The purpose of this paper was to present an accessible,
straightforward, modeling approach, which can be numer-
ically implemented with minimal effort by researchers inter-
ested in the simulation of fibrous biological tissue. In
summary, the advantages of such a fiber network approach
are that the constitutive laws at the (one-dimensional) fiber
level are simple and that the damage and rupture therein is
straightforward to characterize. Additionally, the model is
amenable to extremely rapid numerical simulation. The
purpose of the presented work was simply to illustrate
how the approach works, since it is quite flexible, and
adaptable to specific applications. Clearly, for most appli-
cations, specific material data is needed for the fibrous tis-
sue. In particular, the properties of soft tissue need to be
specified and incorporated in future analyses. The major
points for improvement are (1) incorporation of more real-
istic fiber arrangements (perhaps involving stochastic spa-
tial perturbations) and inter-fiber connections, (2)
incorporation of the soft tissue surrounding the fibers
and (3) incorporation of clinical and experimental results.

Generally, because the distribution of water, biological
fluids and chemical species within such tissue are dependent
on the deformation of the solid, coupled multifield compu-
tations are necessary to realistically simulate such systems.
For example, in many models involving fibrous biological
tissue, it is usually assumed that the response depends on
the concentration of a chemical species present, denoted
s, for example, intracellular calcium Ca2þ, and the stretch
U of the tissue fiber relative to a reference sarcomere
length. A basic form suggested is r ¼ rðs;UÞ, where r is
the total Cauchy stress (active and passive), which com-
bines the mechanical (passive) contribution and the
actively generated muscle tension. There exist several mod-
els for incorporating the effects of a chemical species into
the response of biotissue. For example, consider
r ¼ rmech þ rchemðCa2þ;UÞ, where r is the total Cauchy
stress (active and passive), rmech is the usual mechanical
(passive) contribution, rðCa2þ;UÞ is the actively generated
muscle tension and where U is the stretch along the muscle
fiber. See Rachev and Hayashi [45], Humphrey [25] or [26]
for reviews.8 A proto-typical coupled system involves (a)
fluid mechanics, involving the concentration of suspen-
sions, which are nominally convected with the fluid, (b)
fluid–solid interaction at wall/fluid interfaces, leading to
penetration or absorption of suspensions into the biotissue
and (c) growth of the tissue and an accompanying buildup
of stress and/or possible damage. Staggering schemes are
clearly ideal to simulate such processes (see, for example,
[48,53,38,37,11,12,54–58]). Also see, for example, Zohdi
et al. [59] and Zohdi [60] for simple cases involving coupled
fields associated with atherosclerosis. Generally, such
schemes proceed, within a discretized time step, by solving
each field equation individually, allowing only the corre-
sponding primary field variable to be active. This effectively
decouples the system of differential equations. After the
solution of each field equation, the primary field variable
is updated, and the next field equation is solved in a similar
manner, with only the corresponding primary variable
being active. For accurate numerical solutions, the
approach requires small time steps, primarily because the
staggering error accumulates with each passing increment.
Generally, such computations will require time step
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adaptivity, perhaps, for example, using schemes such as the
one presented in this work. We note that this staggering-
type approach could be used for systems with two families
of interacting fibers, representing two types of tissue, for
example elastin and collagen.

Current work of the author is seeking to describe the
rupture of fibrous cap tissue which forms during plaque
growth associated with the vascular disease of atheroscle-
rosis. Myocardial infarction and stroke can result from
fibrous plaque cap rupture and subsequent release of highly
thrombogenic material and lipids into the blood stream.
Lesions (plaque caps) with a high risk of rupture are
termed vulnerable (see, for example [16]), and are responsi-
ble, along with other micromorphological characteristics,
such as lipid core size, for many sudden life-threatening
cardiovascular events. For example see Shah [49], Virmani
et al. [51], van der Wal and Becker [52], Chyu and Shah [8],
Libby and Aikawa [39], Libby [40], Richardson et al. [46],
Loree et al. [41] and Davies et al. [10] for overviews.
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