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Abstract

In this work ray-tracing theory is employed to determine the amount of propagating incident optical energy, charac-
terized by the Poynting vector, that is reflected and the amount that is absorbed by aggregates of randomly dispersed par-
ticles. It is assumed that any absorbed optical energy becomes entirely trapped within the particles, and is not re-emitted.
Of particular interest is to ascertain the dependence of the overall scattering on the volume fraction of the particles and the
ratio of the refractive indices of the ambient medium and the particles. Both analytical and numerical studies are per-
formed to study the volume fractions and reflectivity of the particles needed to achieve optically thick systems, i.e. systems
where, in an overall averaged sense, no incident electromagnetic radiation penetrates through the aggregate collection of
particles.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A variety of techniques for determining the basic
characteristics of granular media utilize the optical
scattering response to incident light beams. In par-
ticular, for granular flows, lasers can be directed
into the media and a camera records and processes
the scattered images. Approaches such laser veloce-
metry use this approach to generate a sequence of
images to characterize the dynamics of flows. The
flow properties are obtained from consecutive
images. There are a variety of applications that arise
from the reflection and absorption of light in geo-
physical and astrophysical studies involving such
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particulate systems. For example see Bohren and
Huffman (1998) and van de Hulst (1981). For gen-
eral overviews pertaining to granular media, we
refer the reader to Behringer and collaborators:
Behringer (1993), Behringer and Baxter (1993), Beh-
ringer and Miller (1997) and Behringer et al. (1999);
Hutter and collaborators: Tai et al. (2001a,b, 2002),
Gray et al. (1999), Wieland et al. (1999), Berezin
et al. (1998), Gray and Hutter (1997), Gray
(2001), Hutter (1996), Hutter et al. (1995), Hutter
and Rajagopal (1994), Koch et al. (1994), Greve
and Hutter (1993) and Hutter et al. (1993); Jaeger
and collaborators: Jaeger and Nagel (1992a,b),
Nagel (1992), Liu et al. (1991), Liu and Nagel
(1993), Jaeger and Nagel, 1992b, 1993, 1994,
1996a,b and Jaeger and Nagel (1997) and Jenkins
and collaborators: Jenkins and Strack (1993),
.
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Jenkins and La Ragione (1999), Jenkins and Koend-
ers (2004) and Jenkins et al. (2005). Also, it is
important to note that, recently, Torquato and
co-workers have developed new novel methods for
generating extremely high particle volume fractions
necessary for the study of randomly packed (high
density) granular media (see Kansaal et al., 2002;
Donev et al., 2004, 2005a,b).

1.1. Objectives of this paper

This paper concentrates on the aggregate optical
scattering properties of disordered aggregates of par-
ticles. A ray-tracing algorithm is developed and used
in numerical simulations to investigate the scattering
behavior of granular media, and its sensitivity to sys-
tem parameters such as refractive indices, volume
fraction and particle shape. In particular, aggregate
ray-dynamics, corresponding to flow of electromag-
netic energy, are investigated. It is assumed that the
particles are at least an order of magnitude larger
than the wavelength of the incident light, thus mak-
ing geometrical optics and ray-tracing theory appli-
cable (see Bohren and Huffman, 1998; Elmore and
Heald, 1985; van de Hulst, 1981). Ray-tracing is
highly amenable to rapid large-scale computation
needed to track the scattering of incident light beams,
comprised of multiple rays, by multiple particles.

We consider initially coherent beams (Fig. 1),
composed of multiple collinear rays, where each
ray is a vector in the direction of the flow of electro-
magnetic energy, which, in isotropic media, corre-
sponds to the normal to the wave front. Thus, for
isotropic media, the rays are parallel to the wave�s
propagation vector (Fig. 1). Of particular interest
is to describe the break-up of initially highly direc-
tional coherent beams, which, under normal circum-
stances, do not spread out into multidirectional
PARTITIONED INTO
RAYS

BEAM

Fig. 1. The scattering system considered, comprised of a beam,
comprised of multiple rays, incident on a collection of randomly
distributed scatterers.
rays. A prime example is highly intense light, such
as that associated with lasers.

In the past, a primary drawback of using a geo-
metrical optics approach has been that it is computa-
tionally intensive to track multiple rays, undergoing
multiple reflections and subsequent energy losses to
scatterers. Thus, until relatively recently, the prob-
lem of a beam of light, comprised of multiple rays,
encountering multiple scatters, has been essentially
intractable. However, recent simultaneous advances
in numerical methods, coupled with the enormous
increase in computational power, has led to the pos-
sibility that such problems are accessible to rapid
desk top computing. Accordingly, in this paper,
ray-tracing theory is used to determine the amount
of propagating incident energy, characterized by
the Poynting vector, that is reflected and the amount
that is absorbed by randomly distributed scattering
particles suspended in an ambient medium. It is
assumed that any absorbed optical energy becomes
entirely trapped within the particles, and is not re-
emitted. Of particular interest is to ascertain the
dependence of the overall scattering on the volume
fraction of the particles and the ratio of the refractive
indices of the ambient medium and the particles.
Both analytical and numerical studies are performed
to study the volume fractions and refractive indices
of the particles that are needed to achieve optically
thick systems, i.e. systems where no incident electro-
magnetic radiation penetrates through the aggregate
collection of particles.
2. Plane harmonic electromagnetic waves

The propagation of light can be described via an
electromagnetic formalism, by Maxwell�s equations
(in simplified form), in free space

r� E ¼ �l0

oH

ot
; and r�H ¼ �0

oE

ot
; ð2:1Þ

and

r �H ¼ 0; and r � E ¼ 0; ð2:2Þ
where E is the electric field intensity, where H is the
magnetic flux intensity, where �0 is the permittivity
and where l0 is the permeability. Using standard
vector identities, one can show that

r� ðr � EÞ ¼ �l0�0

o2E

ot2
; and

r� ðr �HÞ ¼ �l0�0

o
2H

ot2
; ð2:3Þ
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and that

r2E ¼ 1

c2

o2E

ot2
; and r2H ¼ 1

c2

o2H

ot2
; ð2:4Þ

and that, for example, for the Ex-component of the
electric field1

o
2Ex

ox2
þ o

2Ex

oy2
þ o

2Ex

oz2
¼ 1

c2

o
2Ex

ot2
; ð2:5Þ

where the speed of light is c ¼ 1ffiffiffiffiffiffi
�0l0
p , and where iden-

tical relations hold for Ey, Ez, Hx, Hy and Hz. Now
consider the case of plane harmonic waves, for
example of the form

E ¼ E0 cosðk � r� xtÞ and

H ¼ H0 cosðk � r� xtÞ; ð2:6Þ

where r is an initial position vector to the wave
front, where k is the direction of propagation. For
plane waves, k Æ r = constant. We refer to the phase
as / = k Æ r � xt, and x ¼ 2p

s as the angular fre-
quency, where s is the period. For plane waves,
the wave front is a plane on which / is constant,
which is orthogonal to the direction of propagation,
characterized by k. In the case of harmonic waves,
we have

k� E ¼ l0xH and k�H ¼ ��0xE; ð2:7Þ
and k Æ E = 0 and k Æ H = 0. The three vectors, k, E
and H constitute a mutually orthogonal triad. The
direction of ray propagation is given by E�H

kE�Hk. Since
the free space propagation velocity is given by
c ¼ 1ffiffiffiffiffiffi

�0l0
p for an electromagnetic wave in a vacuum,

and v ¼ 1ffiffiffi
�l
p for electromagnetic waves in another

medium, we can define the index of refraction as2

n ¼def c
v
¼

ffiffiffiffiffiffiffiffiffi
�l
�0l0

r
. ð2:8Þ
2.1. Optical energy propagation

Light waves travelling through space carry elec-
tromagnetic energy which flows in the direction of
wave propagation. The energy per unit area per unit
time flowing perpendicularly into a surface in free
space is given by the Poynting vector S = E · H.
1 We shall employ Cartesian coordinates throughout the
analysis.

2 All electromagnetic radiation travels at the speed of light in
a vacuum, c � 3 · 108 m/s. A more precise value, given by
the National Bureau of Standards, is c � 2.997924562 · 108 ±
1.1 m/s. For visible light, 0.7 · 10�7 m 6 k 6 4 · 10�7 m.
Since at optical frequencies E, H and S oscillate rap-
idly, it is impractical to measure instantaneous val-
ues of S directly. Now consider the harmonic
representations in Eq. (2.6) which leads to

S ¼ E0 �H0cos2ðk � r� xtÞ; ð2:9Þ
and consequently the average value over a longer
time interval than the time scale of rapid random
oscillation,

hSiT ¼ E0 �H0hcos2ðk � r� xtÞiT

¼ 1

2
E0 �H0. ð2:10Þ

We define the irradiance as

I ¼defhkSkiT ¼
1

2
kE0 �H0k ¼

1

2

ffiffiffiffiffi
�0

l0

r
kE0k2. ð2:11Þ

Thus, the rate of flow of energy is proportional to
the square of the amplitude of the electric field. Fur-
thermore, in isotropic media, which we consider for
the duration of the work, the direction of energy is
in the direction of S and in the same direction as k.
Since I is the energy per unit area per unit time, if we
multiply by the ‘‘cross-sectional’’ area of the ray
(ar), we obtain the energy associated with the ray,
denoted as Iar = Iab/Nr, where ab is the cross-sec-
tional area of a beam (comprising all of the rays)
and Nr is the number of rays in the beam (Fig. 1).

2.2. Reflection and absorption of energy

One appeal of geometrical optics is that relatively
elementary concepts are employed. For example,
the law of reflection describes how light is reflected
from smooth surfaces (Fig. 2). The angle between
the point of contact of a ray and the outward nor-
mal to the surface at that point is the angle of inci-
dence (hi). The law of reflection states that the angle
at which the light is reflected is the same as the angle
of incidence and that the incoming (incident, hi) and
outgoing (reflected, hr) rays lay in the same plane,
and hi = hr. The law of refraction states that, if the
ray passes from one medium into a second one (with
a different index of refraction), and, if the index of
refraction of the second medium is less than that
of the first, the angle the ray makes with the normal
to the interface is always less than the angle of inci-
dence, and can be can be written as (the law of
refraction)

n ¼def vvac

vmed

¼ sin hi

sin ht

; ð2:12Þ
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Fig. 2. The nomenclature for Fresnel�s equations for a incident
ray that encounters a scattering particle.

3 A few notable exceptions are concentrated magnetite, pyr-
rhotite, and titanomagnetite (Telford et al., 1990; Nye, 1957).
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where ht is the angle of the transmitted ray (Fig. 2).
Throughout the paper we shall consider collections
of particles ranging from perfectly reflecting types
(n!1), i.e. where the energy associated with a
ray is entirely reflected (according to the law of
refraction) to perfectly absorbing types (n! 1),
where a ray that makes contact with the particle sur-
face is entirely absorbed and not re-emitted. For
those particles with refractive indices existing be-
tween these extremes (1 6 n 61), it is possible to
go beyond a simple description of the direction of
ray travel by employing the Fresnel equations,
which are derived in Appendix A, and summarized
next.

2.3. Generalized Fresnel relations

We consider a plane harmonic wave incident
upon a plane boundary separating two different
optical materials, which produces a reflected wave
and a transmitted (refracted) wave (Fig. 2). The
amount of incident electromagnetic energy (Ii) that
is reflected (Ir) is given by the total reflectance

R ¼def I r

I i

; ð2:13Þ

where 0 6 R 6 1 and where, for unpolarized (natu-
ral) light,
R ¼ 1

2

n̂2

l̂ cos hi � ðn̂2 � sin2hiÞ
1
2

n̂2

l̂ cos hi þ ðn̂2 � sin2hiÞ
1
2

0
@

1
A

20
@

þ
cos hi � 1

l̂ ðn̂
2 � sin2hiÞ

1
2

cos hi þ 1
l̂ ðn̂

2 � sin2hiÞ
1
2

0
@

1
A

21
A; ð2:14Þ

where n̂ is the ratio of the refractive indices of the
ambient (incident) medium (ni) and transmitted par-
ticulate medium (nt), n̂ ¼ nt=ni, where l̂ is the ratio
of the magnetic permeabilities of the surrounding
incident medium (li) and transmitted particulate
medium (lt), l̂ ¼ lt=li.

For most materials, the magnetic permeability is,
within experimental measurements, virtually the
same.3 For the remainder of the work, we shall take
l̂ ¼ 1, i.e. l0 = li � lt. However, further comments
on the sensitivity of the reflectance to l̂ are given
later, in the concluding remarks, and in Appendix
A.

Remark. From this point forth in the analysis, the
ambient medium is assumed to behave as a vacuum.
Thus, there are no energetic losses as the electro-
magnetic rays passes through it. However, we
assume that all electromagnetic energy that is
absorbed by a particle becomes trapped, and not
re-emitted. Such energy is assumed to be converted
into heat. The thermal conversion process, and
subsequent infrared radiation emission is not con-
sidered in the present work. Modeling of the
thermal coupling in such processes can be found
in Zohdi (in press). Thus, we ignore the transmis-
sion of light through the scattering particles, as well
as dispersion, i.e. the decomposition of light into its
component wavelengths (or colors). This phenom-
ena occurs because the index of refraction of a
transparent medium is greater for light of shorter
wavelengths. Thus, whenever light is refracted in
passing from one medium to the next, the violet and
blue light of shorter wavelengths is bent more than
the orange and red light of longer wavelengths.
Dispersive effects introduce a new level of complex-
ity, primarily because of the refraction of different
wavelengths of light, leading to a dramatic growth
in the number of rays of varying intensities and
color (wavelength).
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3. Multiple scatterers

The primary quantity of interest in this work is
the percentage of lost irradiance by a beam, encoun-
tering a collection of randomly distributed particles,
in a selected direction over the time interval of
(0,T). This is characterized by the inner product
of the Poynting vector and a selected direction (d):

Zð0; T Þ ¼def

PN r

i¼1ðSiðt ¼ 0Þ � Siðt ¼ T ÞÞ � dPN r

i¼1Siðt ¼ 0Þ � d
; ð3:1Þ

where Z can be considered the amount of energy
‘‘blocked’’ (in a vectorally averaged sense) from
propagating in the d direction. Here the term
‘‘blocked’’ implies that the sum of both forward
propagating and backward propagating rays is zero.
Now consider a cost function comparing the loss to
the specified blocked amount:

P ¼def Zð0; T Þ �Z�

Z� ; ð3:2Þ

where Z� is a target blocked value. For example, if
Z� ¼ 1, then we desire all of the energy, in a vector-
ally averaged sense, to be blocked. A negative value
of P means that, in an overall sense, rays are being
scattered backwards. The computational algorithm
is as follows, starting at t = 0 and ending at t = T:
ð1Þ COMPUTE RAY ORIENTATIONS AFTER REFLECTION ðFRESNEL RELATIONSÞ
ð2Þ COMPUTE ABSORPTION BY PARTICLES

ð3Þ INCREMENT ALL RAY FRONT POSITIONS : riðt þ DtÞ ¼ riðtÞ þ DtviðtÞ; i ¼ 1; . . . ;RAYS

ð4Þ GO TO ð1Þ AND REPEAT WITH ðt ¼ t þ DtÞ
ð3:3Þ

4 For example, if one were to arrange the particles in a regular
The time step size Dt is dictated by the size of the
particles. A somewhat ad hoc approach is to scale
the time step size according to Dt / nb

kvk, where b

is the radius of the particles, kvk is the magnitude
of the velocity of the rays and n is a scaling factor,
typically 0.05 6 n 6 0.1. To compute P one must
go through the procedure in Box (3.3), requiring a
full-scale simulation.
periodic manner, then at the length-scale ratio of L ¼ 0:25 the
distance between the centers of the particle become four particle
radii. In theoretical works it is often stated that the critical
separation distance between particles is approximately three radii
to be sufficient to treat the particles as independent scatters, and
simply to sum the effects of the individual scatterers to compute
the overall response of the aggregate.

5 Because of the normalized structure of the blocking function,
P, it is insensitive to the magnitude of I.
3.1. Parametrization of the scatterers

We considered a group of Np randomly dispersed
spherical particles, of equal size, in a cubical domain
of dimensions, D · D · D, D = 10�3 m. The particle
size and volume fraction were determined by a
particle/sample size ratio, which was defined via a
subvolume size V ¼def D�D�D

Np
, where Np was the num-

ber of particles in the entire cube. The ratio between
the radius (b) and the subvolume was denoted
by L ¼def b

V
1
3
. The volume fraction occupied by the

particles consequently can be written as vp ¼
def 4pL3

3
.

Thus, the total volume occupied by the particles,4

denoted f, can be written as f = vpNpV. We used
Np = 1000 particles and Nr = 400 rays, arranged in
a square 20 · 20 pattern (Fig. 3). This system
provided stable results, i.e. increasing the number
of rays and/or the number of particles beyond these
levels resulted in negligibly different overall system
responses. The irradiance beam parameter was set
to I = 1018 N m/(m2 s), where the irradiance for
each ray was calculated as Iab/Nr, where Nr = 20 ·
20 = 400 was the number of rays in the beam and
ab = 10�3 m · 10�3 m = 10�6 m2 was the cross-sec-
tional area of the beam.5 The simulations were run
until the rays completely exited the domain, which
corresponded to a time scale on the order of
3�10�3 m

c , where c is the speed of light. The initial
velocity vector for all of the initially colinear rays
comprising the beam was v = (c, 0,0). The particle
length scale was varied between 0:25 6L 6 0:375,
while the relative refractive index ratio was varied
between 2 6 n̂ 6 100.
Remark 1. Typically, for a random realization of
scatterers, comprised of a finite number of particles,
there will be slight variations in the response (P) for
different random configurations. In order to stabi-
lize P�s value with respect to the randomness for a



Fig. 3. Starting from left to right and top to bottom, the progressive movement of rays comprising a beam ðL ¼ 0:325 and n̂ ¼ 10Þ. The
length of the vectors indicate the irradiance.
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given parameter selection, comprised of particle
length scales, relative refractive indicies, etc.,
denoted by K ¼defðL; n̂Þ, an ensemble averaging
procedure is applied whereby the performances of
a series of different random starting scattering
configurations are averaged until the (ensemble)
average converges, i.e. until the following condition

is met: 1
Mþ1

PMþ1
i¼1 PðiÞðKIÞ � 1

M

PM
i¼1P

ðiÞðKIÞ
��� ��� 6

TOL 1
Mþ1

PMþ1
i¼1 PðiÞðKIÞ

��� ���, where index i indicates a

different starting random configuration (i =
1,2, . . . ,M) that has been generated and M indicates
the total number of configurations tested. Similar
ideas have been applied to determine responses of
other types of randomly dispersed particulate media
in Zohdi (2002, 2003a,b, 2004a,b,c). Typically,
between 10 and 20 ensemble sample averages need
to be performed for P to stabilize.
Remark 2. In order to generate the random particle
positions, the classical random sequential addition
(RSA) algorithm was used to place nonoverlapping
particles into the domain of interest (Widom, 1966).
This algorithm was adequate for the volume frac-
tion range of interest (under 30%), since it can deli-
ver up to a limit of approximately 38%. If higher
volume fractions are desired, more sophisticated
algorithms, such as the equilibrium-based Metropo-
lis algorithm can be used. See Torquato (2002) for a
detailed review of such methods. For much higher
volume fractions, effectively packing (and ‘‘jam-
ming’’) particles to theoretical limits (approximately
74%), a new novel class of methods, based on simul-
taneous particle flow and growth, has been devel-
oped by Torquato and co-workers (see, for
example, Kansaal et al., 2002; Donev et al., 2004,
2005a,b). Due to the relatively moderate volume
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Fig. 4. The variation of P as a function of L.

Table 1
The estimated volume fractions needed for no penetration of
incident electromagnetic energy, P = 0

n̂ L
vp ¼

4pL3

3

2 0.4200 0.3107
4 0.3430 0.1692
10 0.3125 0.1278
100 0.2850 0.0969
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fraction range of interest in the present work, this
class of methods was not employed. However, such
methods, which are relatively easy to implement,
computationally efficient and robust, are strongly
recommended to generate extremely high volume
fractions.

Remark 3. It is important to recognize that one can
describe the aggregate ray behavior described in this
work in a more detailed manner via higher moment
distributions of the individual ray-fronts and their
velocities. For example, consider any quantity, Q,
with a distribution of values (Qi, i = 1,2, . . .Nr =
rays) about an arbitrary reference value, denoted
Qw, as follows:

MQi�QH

p ¼def

PN r

i¼1ðQi � QHÞp

N r

¼def ðQi � QHÞp; ð3:4Þ

wherePN r

i¼1ð�Þ
N r

¼def ð�Þ ð3:5Þ

and A ¼def Qi. The various moments characterize the
distribution, for example: (I) M

Qi�A
1 measures the

first deviation from the average, which equals zero,
(II) M

Qi�0
1 is the average, (III) M

Qi�A
2 is the standard

deviation, (IV) M
Qi�A
3 is the skewness and (V) M

Qi�A
4

is the kurtosis. The higher moments, such as the
skewness, measure the bias, or asymmetry of the
distribution of data, while the kurtosis measures
the degree of peakedness of the distribution of data
around the average. The skewness is zero for sym-
metric data. The specification of these higher
moments can be input into a cost function in exactly
the same manner as the average. This was not incor-
porated in the present work.
3.2. Results for spherical scatterers

Fig. 4 indicates that, for a given value of n̂, P
depends in a mildly nonlinear manner on the partic-
ulate length scale ðLÞ. Furthermore, there is a dis-
tinct minimum value of L to just block all of the
incoming rays. A typical visualization for a simula-
tion of the ray propagation is given in Fig. 3.
Clearly, the point where P = 0, for each curve, rep-
resents the length scale which is just large enough to
allow no rays to penetrate through the system. For a
given relative refractive index ratio, length scales
larger than a critical value force more of the rays
to be scattered backwards. Table 1 indicates the esti-
mated values for the length scale and corresponding
volume fraction needed to achieve no penetration of
the electromagnetic rays, i.e. P = 0. Clearly, at
some point there are diminishing returns to increas-
ing the volume fraction for a fixed refractive index
ratio ðn̂Þ. A least-squares curve fit indicates the fol-
lowing relationships between L and n̂, as well as
between the volume fraction, vp and n̂, for P = 0
to be attained

L ¼ 0:9168n̂�0:8939 or vp ¼ 0:7704n̂�1:2484. ð3:6Þ
Qualitatively speaking, these results suggest the
rough intuitive relation, when P = 0, L� n̂ �
constant or vp � n̂ � constant. In other words, if
one has more reflective the particles, one needs less
of them to block incoming rays, and vice-versa.

To further understand this behavior consider a
single reflecting scatterer, with incident rays as
shown in Fig. 5. For all rays at an incident angle
between p

2
and p

4
, they are reflected with some posi-

tive y-component, i.e. ‘‘backwards’’ (back scatter).
However between p

4
and 0, the rays are scattered

with a negative y-component, i.e. forwards. Since
the reflectance is the ratio of the amount of reflected
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energy (irradiance) to the incident energy, it is
appropriate to consider the integrated reflectance
over a quarter of a single scatterer, which indicates
the total fraction of the irradiance reflected

I ¼def 1
p
2

Z p
2

0

Rdh; ð3:7Þ

whose variation with n̂ is shown in Fig. 5. In the
range of tested 2 6 n̂ 6 100, the amount of energy
reflected is a mildly nonlinear (quasilinear) function
of n̂ for a single scatterer, and thus it is not surpris-
ing that it is the same for an aggregate.

3.3. Shape effects: ellipsoidal geometries

One can consider a more detailed description of
the scatterers, where we characterize the shape of
the particles by the equation for an ellipsoid:6

F ¼def x� x0

r1

� �2

þ y � y0

r2

� �2

þ z� z0

r3

� �2

¼ 1.

ð3:8Þ
As an example consider oblate spheroids with an

aspect ratio of Ar ¼ r1

r2
¼ r1

r2
¼ 0:25. As shown in

Fig. 6, the intuitive increase in volume fraction leads
to an increase in overall reflectivity. The reason for
this is that the volume fractions are so low, due to
the fact that the particles are oblate, that the point
of diminishing returns (P = 0) is not met with the
6 The outward surface normals, n, needed during the scattering
calculations, are relatively easy to characterize by writing
n ¼ rF

krF k. The orientation of the particles, usually random, can
be controlled, via rotational coordinate transformations.
same length-scale range as tested for the spheres.
The volume fraction, for oblate spheroids given by
ðAr 6 1Þ

vp ¼
4ArpL

3

3
; ð3:9Þ

where the largest radius (r2 or r3) are used to calcu-
late L. The volume fraction of a system containing
oblate ellipsoidal particles, for example with Ar ¼
0:25, is much lower (one-fourth) than that of a sys-
tem containing spheres with the same length-scale
parameter L. As seen in Fig. 6, at relatively high
volume fractions ðL ¼ 0:375Þ, with the highest
reflectivity tested ðn̂ ¼ 100Þ, the effect of ‘‘diminish-
ing returns’’ starts to begin, as it had for the spher-
ical case. Clearly, it appears to be an effect that
requires relatively high volume fractions to block
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the incoming rays, and consequently the effects of
shape appear minimal for overall scattering.

4. Conclusions

In summary, for the disordered particulate sys-
tems considered, as the volume fraction of the scat-
tering particles increases, as one would expect, less
incident energy penetrates through the aggregate
particulate system. Above this critical volume frac-
tion, more rays are scattered backwards. However,
the volume fraction at which the point of no pene-
tration occurs depends in a quasilinear fashion upon
the ratio of the refractive indices of the particle and
surrounding medium.

The similarity of electromagnetic scattering to
acoustical scattering, governing sound disturbances
which travel in invicid media, is notable. Of course,
the scales at which ray-theory can be applied are
much different, due to the fact that sound wave-
lengths are much larger than the wavelengths of
light. The reflection of a plane harmonic pressure
wave energy at an interface is given by7

R ¼ P r

P i

� �2

¼ Â cos hi � cos ht

Â cos hi þ cos ht

 !2

; ð4:1Þ

where Pi is the incident pressure ray, where Pr is the

reflected pressure ray, where Â ¼def qtct

qici
, where qt is the

medium which the ray encounters (transmitted), ct is
corresponding sound speed in that medium, qi is the
medium in which the ray was traveling (incident)
and ci is corresponding sound speed in that medium.
Clearly, the analysis on the aggregates can be per-
formed for acoustical scattering in essentially the
identical way as for the optical problem. For exam-
ple, for the same model problem as for the optical
scenario, (400 rays, 1000 scatterers), however, with
the geometry and velocity appropriately scaled,8

the results are shown in Fig. 7 for varying
ĉ ¼ ct

ci
¼ 1

~c. The results for the acoustical analogy
are quite similar to those for optics.

As mentioned earlier, for most materials the
magnetic permeability is virtually the same, with
exceptions being concentrated magnetite, pyrrho-
7 This relation is derived in Appendix B.
8 Typical sound wavelengths are in the range of 0.01 m 6

k 6 30 m, with wavespeeds in the range of 300 m/s 6 c 6 1500
m/s, thus leading to wavelengths, f = c/k, with ranges on the
order of 10 1/s 6 f 6 150,000 1/s. Therefore, the scatterers must
be much larger than scatterers in applications involving ray-
tracing in optics.
tite, and titanomagnetite (Telford et al., 1990;
Nye, 1957). Clearly, with many new industrial mate-
rials being developed, possibly having nonstandard
magnetic permeabilities ðl̂ 6¼ 1Þ, such effects may
become more important to consider. Generally,
from studying Eq. (2.14), as l̂!1, R! 1. In
other words, as the relative magnetic permeability
increases, the reflectance increases. More remarks
are given in Appendix A.

Obviously, when more microstructural features
are considered, for example, topological and thermal
variables, parameter studies become quite involved.
In order to eliminate a trial and error approach to
determine the characteristics of the types of particles
would be needed to achieve a certain level of scatter-
ing, in Zohdi (in press) an automated computational
inverse solution technique has recently been devel-
oped to ascertain particle combinations which deli-
ver prespecified electromagnetic scattering, thermal
responses and radiative (infrared) emission, employ-
ing genetic algorithms in combination with implicit
staggering solution schemes, based upon approaches
found in Zohdi (2002, 2003a,b, 2004a,b,c).
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Appendix A. Generalized Fresnel relations

Following a generalization of the Fresnel rela-
tions for unequal magnetic permeabilities in Zohdi
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(in press), we consider a plane harmonic wave inci-
dent upon a plane boundary separating two differ-
ent optical materials, which produces a reflected
wave and a transmitted (refracted) wave (Fig. 2).
Two cases for the electric field vector are consid-
ered: (1) electric field vectors that are parallel (k)
to the plane of incidence and (2) electric field vectors
that are perpendicular (?) to the plane of incidence.
In either case, the tangential components of the elec-
tric and magnetic fields are required to be continu-
ous across the interface. Consider case (1). We
have the following general vectorial representations

Ek ¼ Ek cosðk � r� xtÞe1 and

Hk ¼ H k cosðk � r� xtÞe2; ðA:1Þ

where e1 and e2 are orthogonal to the propagation
direction k. By employing the law of refraction
(ni sinhi = nt sinht) we obtain the following condi-
tions relating the incident, reflected and transmitted
components of the electric field quantities

Eki cos hi � Ekr cos hr ¼ Ekt cos ht and

H?i þ H?r ¼ H?t. ðA:2Þ

Since, for plane harmonic waves, the magnetic and
electric field amplitudes are related by H ¼ E

vl, we
have

Eki þ Ekr ¼
li

lt

vi

vt

Ekt ¼
li

lt

nt

ni

Ekt ¼def n̂
l̂

Ekt; ðA:3Þ

where l̂ ¼def lt

li
, n̂ ¼def nt

ni
and where vi, vr and vt are the

values of the velocity in the incident, reflected and
transmitted directions.9 By again employing the
law of refraction, we obtain the Fresnel reflection
and transmission coefficients, generalized for the
case of unequal magnetic permeabilities

rk ¼
Ekr
Eki
¼

n̂
l̂ cos hi � cos ht

n̂
l̂ cos hi þ cos ht

and

tk ¼
Ekt
Eki
¼ 2 cos hi

cos ht þ n̂
l̂ cos hi

. ðA:4Þ

Following the same procedure for case (2), where
the components of E are perpendicular to the plane
of incidence, we have

r? ¼
E?r

E?i

¼
cos hi � n̂

l̂ cos ht

cos hi þ n̂
l̂ cos ht

and

t? ¼
E?t

E?i

¼ 2 cos hi

cos hi þ n̂
l̂ cos ht

. ðA:5Þ
9 Throughout the analysis we assume that n̂ P 1.
Our primary interest is in the reflections. We define
the reflectances as

Rk ¼
def

r2
k and R? ¼

def
r2
?. ðA:6Þ

Particularly convenient forms for the reflections are

rk ¼
n̂2

l̂ cos hi � ðn̂2 � sin2hiÞ
1
2

n̂2

l̂ cos hi þ ðn̂2 � sin2hiÞ
1
2

and

r? ¼
cos hi � 1

l̂ ðn̂
2 � sin2hiÞ

1
2

cos hi þ 1
l̂ ðn̂

2 � sin2hiÞ
1
2

. ðA:7Þ

Thus, the total energy reflected can be characterized
by

R ¼def Er

Ei

� �2

¼
E2
?r þ E2

ki

E2
i

¼ Ikr þ I?r

I i

. ðA:8Þ

If the resultant plane of oscillation of the (polarized)
wave makes an angle of ci with the plane of inci-
dence, then

Eki ¼ Ei cos ci and E?i ¼ Ei sin ci; ðA:9Þ

and it follows from the previous definition of I that

Iki ¼ I icos2ci and I?i ¼ I isin2ci. ðA:10Þ

Substituting these expression back into the expres-
sions for the reflectances yields

R ¼ Ikr
I i

cos2ci þ
I?r

I i

sin2ci ¼ Rkcos2ci þ R?sin2ci.

ðA:11Þ
incidence. For all but n̂ ¼ 2, is there discernable nonmonotone
behavior. The behavior is slight for n̂ ¼ 4, but nonetheless
present.
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For natural or unpolarized light, the angle ci varies
rapidly in a random manner, as does the field ampli-
tude. Thus, since

hcos2ciðtÞiT ¼
1

2
and hsin2ciðtÞiT ¼

1

2
; ðA:12Þ

and therefore for natural light

Iki ¼
I i

2
and I?i ¼

I i

2
. ðA:13Þ

and therefore

r2
k ¼

E2
kr

E2
ki

 !2

¼ Ikr
Iki

and r2
? ¼

E2
?r

E2
?i

� �2

¼ I?r

I?i

.

ðA:14Þ
Thus, the total reflectance becomes

R ¼ 1

2
ðRk þ R?Þ ¼

1

2
ðr2
k þ r2

?Þ; ðA:15Þ

where 0 6 R 6 1. For the cases where sin ht ¼
sin hi

n̂ > 1, one may rewrite reflection relations as

rk ¼
n̂2

l̂ cos hi � jðsin2hi � n̂2Þ
1
2

n̂2

l̂ cos hi þ jðsin2hi � n̂2Þ
1
2

and

r? ¼
cos hi � 1

l̂ jðsin2hi � n̂2Þ
1
2

cos hi þ 1
l̂ jðsin2hi � n̂2Þ

1
2

; ðA:16Þ

where, j ¼
ffiffiffiffiffiffiffi
�1
p

, and in this complex case10

Rk ¼
def

rk�rk ¼ 1; and R? ¼
def

r?�r? ¼ 1; ðA:17Þ
10 The limiting case
sin h�i

n̂ ¼ 1, is the critical angle ðh�i Þ case.
where �rk and �r? are complex conjugates. Thus, for
angles below the critical angle h�i , all of the energy
is reflected. Notice that as n̂! 1 we have complete
absorption, while as n̂!1 we have complete
reflection. The total amount of absorbed power by
the particles is (1 � R)Ii. Thermal (infrared) cou-
pling effects, which are outside of the scope of this
paper, have been accounted for in Zohdi (in press).

In order to understand the dependency of the
results on n̂, recall the fundamental relation for
reflectance

R ¼ 1

2

n̂2

l̂ cos hi � ðn̂2 � sin2hiÞ
1
2

n̂2

l̂ cos hi þ ðn̂2 � sin2hiÞ
1
2

0
@

1
A

20
@

þ
cos hi � 1

l̂ ðn̂
2 � sin2hiÞ

1
2

cos hi þ 1
l̂ ðn̂

2 � sin2hiÞ
1
2

0
@

1
A

21
A; ðA:18Þ

whose variation as a function of the angle hi is de-
picted in Fig. 4. For all but n̂ ¼ 2, is there discern-
able nonmonotone behavior. The nonmonotone
behavior is slight for n̂ ¼ 4, but nonetheless present.
Clearly, as n̂!1, R! 1, no matter what the angle
of incidence�s value. Also, as n̂! 1, provided that
l̂ ¼ 1, R! 0, i.e. all incident energy is absorbed.
With increasing n̂, the angle for minimum reflec-
tance grows larger. Fig. 8 illustrates the behavior
for l̂ ¼ 1. For l̂ 6¼ 1, see Fig. 9, which illustrates
the variation of R when l̂ ¼ 2 and l̂ ¼ 10.

Appendix B. Acoustical analogies

The reflection of a plane harmonic pressure wave
at an interface is given by enforcing continuity of
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the acoustical pressure and disturbance velocity at
that location to yield the ratio between the incident
and reflected pressures

r ¼ P r

P i

¼ Â cos hi � cos ht

Â cos hi þ cos ht

; ðB:1Þ

where Pi is the incident pressure ray, where Pr is the
reflected pressure ray, where Â ¼def qtct

qici
, where qt is the

medium which the ray encounters (transmitted), ct is
corresponding sound speed in that medium, qi is the
medium in which the ray was traveling (incident)
and ci is corresponding sound speed in that medium.
The relationship (the law of refraction) between the
incident and transmitted angles is ctsinht = cisinhi.
Thus, we may write

r ¼ ~cÂ cos hi � ð~c2 � sin2hiÞ
1
2

~cÂ cos hi þ ð~c2 � sin2hiÞ
1
2

; ðB:2Þ

where ~c ¼def ci

ct
. The reflectance for the acoustical en-

ergy is R = r2. For the cases where sin ht ¼ sin hi

~c >
1, one may rewrite reflection relation as

r ¼ ~cÂ cos hi � jðsin2hi � ~c2Þ
1
2

~cÂ cos hi þ jðsin2hi � ~c2Þ
1
2

; ðB:3Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

. The reflectance is R ¼def r�r ¼ 1, where
�r is the complex conjugate. Thus, for angles below
the critical angle hi 6 h�i , all of the energy is reflected.
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