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Abstract

The objective of this communication is to develop a computer-based framework for the overall coupled phenomena leading to

growth and rupture of atherosclerotic plaques. The modeling is purposely simplified to expose the dominant phenomenological

controlling mechanisms, and their coupled interaction. The main ingredients of the present simplified modeling approach, describing

the events that occur due to the presence and oxidation of excess low-density lipoprotein (LDL) in the intima, are: (i) adhesion of

monocytes to the endothelial surface, which is controlled by the intensity of the blood flow and the adhesion molecules stimulated by

the excess LDL, (ii) penetration of the monocytes into the intima and subsequent inflammation of the tissue, and (iii) rupture of the

plaque accompanied with some degree of thrombus formation or even subsequent occlusive thrombosis. The set of resulting coupled

equations, each modeling entirely different physical events, is solved using an iterative staggering scheme, which allows the equations

to be solved in a computationally convenient decoupled fashion. Theoretical convergence properties of the scheme are given as a

function of physical parameters involved. A numerical example is given to illustrate the modeling approach and an a priori

prediction for time to rupture as a function of arterial geometry, diameter of the monocyte, adhesion stress, bulk modulus of the

ruptured wall material, blood viscosity, flow rate and mass density of the monocytes.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Atherosclerosis is a vascular disease associated with
the accumulation of lipids leading to invasion of
leukocytes (monocytes) and smooth muscle cells into
the intima, a process which may proceed to the
formation of atheroma. Biomechanical and biochemical
mechanisms are involved in the development of the
lesions characteristic of atherosclerotic plaque. Myocar-
dial infarction and stroke can result from plaque rupture
and subsequent release of highly thrombogenic material
and lipids into the blood stream.
Lesions with high risk of rupture are termed vulner-

able, (see, for example, Fuster, 2002). These lesions,
culprits in the sudden life-threatening cardiovascular
ing author.

resses: zohdi@newton.berkeley.edu (T.I. Zohdi),

-graz.ac.at (G.A. Holzapfel), saberger@me.berkeley.

r).

e front matter r 2003 Elsevier Ltd. All rights reserved.

i.2003.11.025
events, are associated with, among other features,
micromorphological characteristics, such as plaque cap
thickness (Richardson et al., 1989; Loree et al., 1992),
and lipid core size (Davies et al., 1993). The study
suggested that silent subclinical plaque rupture occurs
frequently in patients with atherosclerosis. The size and
bulk of lesions is likely to increase as a result of repeated
sequences of rupture and repair. This may explain why
myocardial infarction often occurs in asymptomatic
patients. No adequate diagnostic strategy for the identi-
fication of vulnerable plaques is available yet. Investiga-
tors are striving to determine why one plaque is vulnerable
and life-threatening while another one is resistant and
innocuous. Elucidation of the mechanisms and factors
involved in plaque initiation, growth, and development
could lead to strategies to stabilize atherosclerotic plaques
and to prevent plaque rupture through lesion-specific
interventions (see, for example, Libby and Aikawa, 2002).
Certain aspects of the overall growth process are well

understood. Essentially, excess low-density lipoprotein
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(LDL) particles accumulate in the intima inducing a
series of biochemical events, which cause endothelial
cells to produce cell adhesion molecules, which latch
onto blood monocytes. In the intima, the monocytes
mature into active macrophages, which then ingest
modified lipoprotein particles, ending up as fat-laden
foam cells. Smooth muscle cells in the intima divide, and
other smooth muscle cells migrate into the intima from
the media attracted by cytokines. Smooth muscle cells
then elaborate extracellular matrix, promoting extra-
cellular matrix accumulation in the growing athero-
sclerotic plaque. In later stages, a (thin) fibrous cap,
composed primarily of extracellular matrix proteins
such as elastin and collagen (Virmani et al., 2000), may
form over a large lipid pool. This is the typical
morphological structure of vulnerable plaques asso-
ciated with rupture. Later, for example, inflammatory
substances secreted by the tissue can cause the thin
fibrous cap to become highly stressed, and possibly
rupture, releasing material which can lead to potentially
lethal blood clots. Excellent overviews of the current
thinking in the medical community pertaining to the
growth and rupture of atherosclerotic plaques are
provided in Shah (1997), van der Wal and Becker
(1999), Chyu and Shah (2001) and Libby (2001a, b),
among others.
Corresponding laboratory tests to investigate the

biological processes mentioned above are extremely
difficult, even though the individual events are relatively
straightforward to describe from the mechanical point
of view. Physical and numerical modeling of individual
portions of this process have been undertaken by
numerous researchers, one example is the modeling of
the highly nonlinear deformation mechanisms and stress
distributions in healthy and diseased arteries under
different loading conditions, see, for example, the
studies (Holzapfel et al., 2000, 2002a, b) by Holzapfel
and co-workers, or the more general overview given by
Humphrey (2002) and Holzapfel and Ogden (2003),
among others. However, while there are numerous
researches detailing specific clinical events involved in
the growth and rupture of atherosclerotic plaques, to the
knowledge of the authors, there appears to be an
absence of works which focuses attention on developing
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Fig. 1. Schematic for th
a comprehensive mathematical model, which both
addresses all of the events simultaneously and provides
robust solutions.
It was the objective of this research to develop a

constitutive and computational framework, which as-
sembles very simple models governing essentially
different physical events, in order to describe the
complex coupled events of atherosclerotic plaque
growth and rupture. Since modeling of these coupled
events is rather complex, and there being no framework
available which could be used as a basis, the present
work aims to provide this larger perspective on the
problem. In Section 2 we provide the physical setting,
while in Section 3 we present computational aspects
required to solve the coupled system of nonlinear
equations. The concluding remarks mainly focus atten-
tion on the limitations of the presented approach, and
attempt to motivate several possible improvements.
2. Phenomenological mathematical idealizations

We start by developing a phenomenological model to
describe how the cross-section of the artery, A ¼ pr2in
(Fig. 1), changes in response to the presence of an excess
of lipids in the intima and the subsequent growth of the
tissue due to inflammation associated with the adhesion
of monocytes onto the intima wall and penetration
therein. The inner radius of the artery is denoted by rin:
We assume that the blood contains lipids and mono-
cytes in suspension that are convected along by the
blood via drag forces. We consider an incompressible,
steady, 1D flow profile, with a constant flow rate
Q0 ¼ v0A0 ¼

R
A

v dA ¼ Q
� �

; through an artery, given
by ðq > 0Þ

v ¼ vmax 1�
r

rin

� �q� �
: ð1Þ

Because the flow rate is constant ðQ0 ¼ QÞ this implies

vmax ¼
Q0

Að1� ½2=q þ 2�Þ
: ð2Þ

The velocity of a monocyte particle of diameter d (see
Fig. 1), which is convected with the fluid near the
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1The pressure criterion is a logical choice, since it is believed that

rupture occurs when the thin fibrous plaque cap, which is essentially a

thin membrane, bursts, in a similar manner as an overpumped balloon.

The material in the intima is then released, leading to a stroke.
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endothelial surface, is approximated by the velocity vc of
its center

vc ¼
def

vmax 1�
rin � ðd=2Þ

rin

� �q� �
: ð3Þ

To determine the critical velocity of the monocyte, v�

say, below which a particle will become arrested at the
wall surface, we write an impulse-momentum balance
(see Fig. 1)

mv� þ
Z tres

0

X
F dtEmv� þ Fdtres � Fatres ¼ 0; ð4Þ

where m is the mass of the monocyte, and Fd is the drag
force imposed on the particle by the fluid, which, for low
Reynolds numbers is FdE3pmv�d (law of Stokes), with
m being the absolute viscosity of the fluid. We assume
that the adhesive force Fa is proportional to the cross-
sectional area of the monocyte, and proportional to the
adhesion stress ta; i.e. adhesive force per unit area,
produced on the intima surface upon contact. We write
FaEg1tapd2=4; where g1 is a constant of proportion-
ality, which scales the contact area to the cross-sectional
area of the particle, and tres is the contact time,
commonly referred to in the literature as the ‘residence
time’ (see, for example, Libby, 2001a, b). In addition, we
assume that v�Eg2d=tres; where g2 is another constant of
proportionality, which scales the contact time to the
critical velocity of the monocyte. The mass of the
monocyte is m ¼ rmpd3=6; where rm is the reference
mass density of the monocyte particle. Substitution into
the impulse-momentum balance yields an explicit
equation for the critical velocity of the monocyte, i.e.

ðv�Þ2 þ
18g2mv�

drm

�
3g1g2ta
2rm

¼ 0 ð5Þ

which yields

v� ¼ �
9g2m
drm

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81g22m

2

d2r2l
þ
3g1g2ta
2rm

s
; ð6Þ

where the positive root is the physically correct one. It is
assumed that the concentration of the monocytes
arrested at the wall, denoted as cw; is proportional to
the difference between the velocity of the monocytes vc

and the critical velocity v�: Thus,

cwpmax 0; 1�
vc

v�

� �
¼
def

Z: ð7Þ

As the velocity increases, particles are less likely to adhere,
until a critical velocity is met, where no particles adhere.
Essentially, one can interpret Z as a distribution function,
which indicates the likelihood of a particle adhering to the
intima surface as a function of the near-wall velocity.
The assumption is now made, that the growing

thickness of the intima, denoted as a; is related to the
concentration of monocytes by

’a ¼ FðZ;y;material parametersÞ: ð8Þ
This phenomenological model accounts for the intimal
thickening due to the presence of the monocytes and
subsequent reactions due to monocytes and macro-
phages, etc. Specifically, this takes the form of a
somewhat standard growth law, commonly used in
analyses of scale growth in pipe flow (see, for example,
Fontana, 1986; Shackelford, 2000)

’a ¼ KZ; ð9Þ

where K is a growth rate constant. If Z were time-
invariant, then the growth would be ‘linear’ of the form

aðtÞ ¼ KZt þ að0Þ: ð10Þ

However, this observation can only be taken qualita-
tively, because Z is a function of a and t; due to the fact
that v is a function of rinðtÞ ¼ rout � aðtÞ (see Fig. 1). In
Section 3, we provide an algorithm to solve this coupled
system.
In order to describe the rupture of the thin fibrous

cap, which is coupled with the growth, we use a simple
constitutive approach, and split the stored energy C into
purely isochoric ð %CÞ and volumetric ðUÞ parts, i.e.

C ¼ %Cþ
k
2
ðJ � 1Þ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

def
¼ U

; ð11Þ

where k is the bulk modulus of the material, and J ¼
det F is the Jacobian determinant of the deformation
gradient F ¼ rX x; whereby u ¼ x � X is the displace-
ment vector, and X and x indicate referential position
and spatial position of a point relative to a fixed origin.
For the associated kinematics, see, for example,
Holzapfel (2000).
With C ¼ FTF denoting the right Cauchy–Green

tensor, it is straightforward to derive the stress relation.
In particular, the Cauchy stress tensor r is obtained
from C through the relation r ¼ J�1Fð2@C=@CÞFT;
(Holzapfel, 2000), and by considering the particular
constitutive assumption (11) we get r ¼ r þ p1; where
r ¼ J�1Fð2@ %C=@CÞFT denotes the purely isochoric
contribution, and p1 the purely volumetric contribution
to the stresses, with

p ¼
@U

@J
¼ kðJ � 1Þ: ð12Þ

Note that p ¼ tr r=3 can be identified as the hydrostatic
pressure. Further, we propose that rupture in the thin
fibrous cap occurs when the pressure p in the cap
exceeds some critical value p� at a continuum particle,
pXp� say.1 We now consider a problem with the simple
kinematics, as shown in Fig. 2. Thereby, a continuum
particle on the endothelial surface, with referential
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Fig. 2. Continuum particle on the endothelial surface with referential

position X displaced to the current position x; with u1 ¼ u2 ¼ 0 and

u3 ¼ DaðtÞX3:
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Fig. 3. Schematic flowchart.
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position X (with referential coordinates ðX1;X2;X3Þ), is
displaced to the current position x (with spatial
coordinates ðx1;x2; x3Þ) so that u1 ¼ u2 ¼ 0 and u3 ¼
DaðtÞX3; with DaðtÞ ¼ aðtÞ � aðt ¼ 0Þ; are the Cartesian
components of the displacement vector u: Hence, the
matrix representation ½F� of the deformation gradient F
and the volume ratio J reduces to

½F� ¼

1 0 0

0 1 0

0 0 DaðtÞ þ 1

2
64

3
75;

J ¼ det½F� ¼ DaðtÞ þ 1; ð13Þ

which leads, with Eq. (12), to

p ¼ kDaðtÞ: ð14Þ

Remark. Although the deformation used is relatively
simple, it captures the essence of the swelling of the
intima. More complicated deformations would be an
overkill since they would be still coupled to the simple
fluid model. Furthermore, since the pressure is the only
quantity sought after, this deformation is adequate.
However, if a more sophisticated rupture criteria would
be used, for example involving shear stresses, then the
deformation analysis would have to be more detailed.
2 In addition to convergence issues, for accurate numerical solutions

such approaches require small time steps, primarily because the

staggering error accumulates with each successive increment.
3. A staggered solution scheme for growth and rupture

To solve the coupled system of equations in the
previous section, an implicit fixed-point recursion is
used to update the nonlinear velocity-growth coupling
within each time step. Given the critical velocity v�

through (6), the procedure at a given time t and with the
time increment Dt is as follows:

ðIÞ Solve for fluid velocity ðfix aiðtÞ ¼ rout � ri
inðtÞÞ:

vc;iþ1ðtÞ ¼ vi
max 1�

ri
inðtÞ � ðd=2Þ

ri
inðtÞ

� �q� �

) update : Ziþ1ðtÞ ¼ max 0; 1�
vc;iþ1ðtÞ

v�

� �
;

ðIIÞ Solve for growth ðfix vc;iþ1ðtÞÞ:

’aiþ1ðtÞ ¼KZiþ1 ) aiþ1ðtÞ ¼ KZiþ1Dt þ aðt � DtÞ

) update : riþ1
in ðtÞ ¼ rout � aiþ1ðtÞ;

ðIIIÞ Repeat until : jjriþ1
in ðtÞ � ri

inðtÞjjpTOL: ð15Þ

The index of iteration at time t is denoted by
i ¼ 1;y;N: The first step starts at fixed thickness a of
the intima. The fluid mechanical problem is solved for the
velocity vc of the center of the monocyte, and thereafter
the particle/wall adhesion check is performed—the
distribution function Z is computed. In a second step,
at fixed velocity vc; the evolution equation for intimal
growth is solved for a; and thereafter rin is computed.
This two-step algorithm is continued as long as jjriþ1

in ðtÞ �
ri

inðtÞjjpTOL; where TOL is a small tolerance value.
After the process has converged at t; the failure criterion
pðtÞXp� is checked. A schematic flowchart is presented in
Fig. 3. Increased accuracy is acquired for smaller time
increments Dt in the growth law.

3.1. General convergence criteria

The convergence to a fixed-point solution, as de-
scribed in scheme (15), is also controlled by the time
increment Dt: Thus, during the simulations, if the time
step solution does not converge within a certain number
of iterations, the time step is reduced.2 In abstract terms,
consider DðrinðtÞÞ ¼ F; where rinðtÞ is to be solved for at
time t: It is convenient to write an operator split

DðrinðtÞÞ �F ¼ GðrinðtÞÞ � rinðtÞ þ z ¼ 0; ð16Þ

where z is the remainder term in the operator split. A
straightforward, well established, type of iterative
scheme is

ri
inðtÞ ¼ Gðri�1

in ðtÞÞ þ z; ð17Þ

where i ¼ 1;y;N is the index of iteration at time t: The
convergence of such a scheme is dependent on the
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behavior of G: Namely, a sufficient condition for
convergence is that G is a contraction mapping for all
ri

inðtÞ: Accordingly, we define the error as e
iðtÞ ¼ ri

inðtÞ �
rinðtÞ: A necessary restriction for convergence is iterative
self-consistency, i.e. the exact solution must be repre-
sented by the scheme GðrinðtÞÞ þ z ¼ rinðtÞ: Enforcing this
restriction, a sufficient condition for convergence is the
existence of a contraction mapping

jeiðtÞj ¼ jri
inðtÞ � rinðtÞj

¼ jGðri�1
in ðtÞÞ � GðrinðtÞÞjpljri�1

in ðtÞ � rinðtÞj; ð18Þ

where l denotes the fixed-point constant. If 0plo1 for
each iteration i; then eiðtÞ-0 for any arbitrary starting
value ri¼0

in ðtÞ as i-N: The type of contraction condition
discussed is sufficient, but not necessary, for conver-
gence. For more details see, for example, Ostrowski
(1966), Ortega and Rockoff (1966), Kitchen (1966),
Ames (1977) or Axelsson (1994).

3.2. Qualitative behavior

The fixed-point constant l may be determined
explicitly in terms of the material parameters and flow
rates involved. This is achieved by collapsing all of the
equations into a single one involving the primary
variable rinðtÞ (for convenience, we will omit subse-
quently the index of iteration at time t). By referring to
(15), during the staggering process, we find, by defining
a0 ¼ aðt � DtÞ and gðrinðtÞÞ ¼ vcðtÞ=v�; that aðtÞ ¼
KZDt þ a0: This implies

rinðtÞ ¼ rout � KZDt � a0 ¼ GðrinðtÞÞ þ z; ð19Þ

in which the definitions

GðrinðtÞÞ ¼ KDtgðrinðtÞÞ; z ¼ rout � a0 � KDt ð20Þ

are to be used. In this case, with Eqs. (1), (2) and(6) we
find that

GðrinðtÞÞ

¼ KDt
Q0=ðpr2inðtÞð1� ð2=q þ 2ÞÞÞ½1� ðrinðtÞ � d=2=rinðtÞÞ

q�

�ð9g2m=drmÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð81g22m

2=d2r2l Þ þ ð3g1g2ta=2rmÞ
q :

ð21Þ

Therefore, we have the following observations:

* As either rm; d; Q0; K or Dt increase, then GðrinðtÞÞ
increases, thus impairing convergence,

* As either ta; m or q decrease, then GðrinðtÞÞ increases,
thus impairing convergence.

Eq. (21) allows an explicit expression for the necessary
time step Dt to achieve convergence. We obtain

KDt
Q0=ðpr2inðtÞð1� 2=ðq þ 2ÞÞÞ½1� ðrinðtÞ � ðd=2Þ=rinðtÞÞ

q�

�9g2m=drm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð81g22m

2=d2r2l Þ þ ð3g1g2ta=2rmÞ
q

oTOLo1 ð22Þ
which leads to

Dto

TOLð�ð9g2m=drmÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð81g22m

2=d2r2l Þ þ ð3g1g2ta=2rmÞ
q

Þ

KQ0=ðpr2inðtÞð1� 2=ðq þ 2ÞÞÞ½1� ðrinðtÞ � ðd=2Þ=rinðtÞÞ
q�
:

ð23Þ

3.3. Approximate critical time to rupture

Here we approximate the critical time, t� say, at
which rupture occurs. This approximation is based on
the premise that rupture depends solely on some critical
value p� of the hydrostatic pressure at a continuum
particle.
For the rupture criterion to be met, we have p ¼ p�;

where the particularized form for the hydrostatic
pressure is given (14), i.e. p ¼ kDaðtÞ: To find the critical
growth we invert this expression, which gives

Daðt�Þ ¼
p�

k
: ð24Þ

By considering the case where Z is slowly varying, thus
ZEðv� � vcÞ=v�; this leads to an explicit expression for
t�: From (10) we find with Daðt�Þ ¼ aðt�Þ � að0Þ that

aðt�ÞEKZt� þ að0Þ ) t� ¼
Daðt�Þ

KZ
: ð25Þ

Using (24) we then get the critical time

t� ¼
p�

kKZ
ð26Þ

at which rupture occurs.

3.4. Numerical example

In the following, a specific numerical example is
briefly presented with the goal of showing the evolution
of certain quantities with time obtained from the
solution of the coupled velocity-growth model, as
described in this section. In particular, the geometry of
the artery and the material parameters used are shown
in Table 1 (Berger, 1996). The only constant that was
not obtained from the literature was K : This constant
was estimated from known approximate times (E 15–20
years) to rupture. Therefore, one can consider such a
simulation as the result of an inverse problem where K

was sought. The constants of proportionality, g1 and g2;
were set to unity and a quadratic velocity profile was
used (q ¼ 2).
Fig. 4 shows the evolution of the inner radius rin of the

artery, the velocity vc of the center of the monocyte, and
the pressure p with time t: Under the conditions
simulated the atherosclerotic plaque would rupture in
t� ¼ 16 years. During this process, the inner radius
decreases to approximately two-thirds of its original
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Table 1

The material parameters used in the simulation

rout rin ðt ¼ 0Þ v0 K m

2:85� 10�3 m 2:75� 10�3 m 10�1 m=s 10�12 m=s 3:5� 10�3 Ns=m2

rm p� d ta k

8:8� 102 kg=m3 107 N=m2 10�6 m 103 N=m2 1010 N=m2

0
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4

6

8

10

12

0 2 4 6 8 10 12 14 16

TIME (YEARS)

rin (mm)

<v> (m/sec)x10-1

p (MPa)

Fig. 4. Time-dependent behavior of the inner radius rin of the artery,

the mean flow velocity and the evolution of the pressure p in the thin

plaque cap. The rupture limit was set to 10 Mpa: The velocity profile
was set to q ¼ 2:
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value, thus leading to an increased mean velocity of the
flow, due to the constant mass flow condition and a
decreasing lumen cross-sectional area. Simulation times
were on the order of one second on a standard Unix
workstation. The analytical approximate estimate in
Eq. (26) indicates time to rupture to within 1% of the
computed result. The accuracy of the prediction can be
attributed to the weakly nonlinear growth.
4. Concluding remarks

This communication is a first attempt to model the
overall, long-time coupled phenomena of atherosclerotic
plaque growth and rupture from a biomechanical
(physical) and numerical point of view. Our long-term
goal is to be able to deduce, via inverse biomechanical
and biochemical simulation of the temporal evolution
and rupture of (vulnerable) atherosclerotic plaques,
those characteristics which make them vulnerable. While
the overall computational framework developed in this
work potentially is general enough for this goal to be
attainable, each of the described components of the
associated processes should be replaced by more
sophisticated models incorporating and capturing more
detailed geometrical, physical, and biochemical infor-
mation. For example, plaque vulnerability is thought to
be highly dependent upon the morphology, i.e. 3D
geometry and composition, of the domain of interest.
In this work the rupture of the plaque is restricted to
pressure-based failure. A more sophisticated fracture
criterion should also include shear stresses and damage
mechanisms.
Realistic assessment of vulnerable atherosclerotic

plaques requires advanced (physical) modeling in the
following areas:

1. 3D ‘morpho-mechanical’ data coming from, for
example, optical coherence tomography (Yabushita
et al., 2002), or high-resolution magnetic resonance
imaging (see, for example, Fuster, 2002; Holzapfel
et al., 2002b);

2. residence time tres for the monocytes in the intima and
its correlation to the concentration at the inner wall
boundary;

3. mass transfer of the LDLs into the intima;
4. mechanobiological reactions caused within the intima
resulting in the growth of the atherosclerotic plaque;
and

5. the failure of the atherosclerotic plaque,

among several other aspects.
More detailed analyses have do be performed in 3D

and will inevitably require numerical discretization,
employing techniques such as the finite element method.
In Zohdi (2002), a recursive staggering strategy which
allowed the adaptive control of time step sizes, was
developed for large-scale multifield staggered computa-
tion of the environmental degradation of micro-hetero-
geneous structural materials, which could possibly be
used in conjunction with more advanced models of
atherosclerotic plaque growth and rupture. A powerful
staggered solution technique in conjunction with more
advanced biomechanical and biochemical models in 3D
may be helpful in providing a basis for an improved
understanding of the interaction of plaque morphology,
composition, inflammation, mechanical factors and
plaque rupture, potentially enabling predictions for the
onset of acute cardiovascular syndromes such as
myocardial infarction or stroke. Computational me-
chanics may provide significant contributions for the
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understanding, identification and treatment of vulner-
able plaques. This task is being currently pursued by the
authors.
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