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Abstract

The focus of this work is on the development of a computational strategy to design materials composed of randomly

dispersed particulates suspended in a homogeneous binding matrix. The design objectives are to deliver prescribed

macroscopic effective responses while simultaneously obeying constraints that reflect the distortion of the microscale

stress fields, as well as the likelihood for fatigue damage. A nonderivative statistical genetic algorithm is developed

which can handle difficulties in designing materials with random particulate microstructure due to objective function

nonconvexity and lack of objective function regularity. Theoretical aspects are investigated and three-dimensional

numerical examples are given.
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1. Computational material design

In this work, we are primarily concerned with the construction and solution of inverse problems de-

scribing the design of materials composed of randomly dispersed particulates suspended in a homogeneous

binding matrix. The design objectives are to find sets of microstructural parameters, such as the relative

volume fractions of the constituents, the geometries of the particulates and their mechanical properties,
which minimize

P ¼ kE� �E�;Dk
kE�;Dk

� �q0

; ð1:1Þ

where 0 < q0 < 1, while simultaneously obeying constraints on the microscale stress field behavior. The

constraints will be specified shortly. Here E�;D is a prespecified desired effective response, E� is the effective

response described via hriX ¼ E� : h�iX, where h�iX ¼def 1
jXj
R
X dX, and where r and � are the stress and strain
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tensor fields within a statistically representative volume element of volume jXj, produced by a trial mi-

crostructure. 1 If the effective response is assumed isotropic, which is the case if the particles are randomly

distributed and randomly oriented (if nonspherical), then the effective bulk and shear moduli are given by

3j� ¼def htrr=3iXhtr�=3iX
and 2l� ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr0iX : hr0iX
h�0iX : h�0iX

s
:

An extensive review of the state of the art in the analysis of random heterogeneous media can be found in

the work of Torquato [58–62].

In order to systematize the computational minimization process, we characterize a microstructural de-

sign through an N -tuple design vector, denoted K¼def ðK1;K2; . . . ;KN Þ, representing the following compo-

nents. (I) Particulate mechanical properties: for example, assuming local isotropy of the particles, the bulk

and shear moduli, j2 and l2 (two variables), (II) particulate topology: where we characterize the shape of

the particulates by a generalized ellipsoidal equation:

jx� x0j
r1

� �s1

þ jy � y0j
r2

� �s2

þ jz� z0j
r3

� �s3

¼ 1; ð1:2Þ

where the s�s are exponents. Values of s < 1 produce nonconvex shapes, while s > 2 values produce ‘‘block-

like’’ shapes (three design variables), (III) particulate aspect ratio: for example, defined by AR¼def r1
r2
¼ r1

r3
,

where r2 ¼ r3, AR>1 for prolate geometries and AR<1 for oblate shapes (one variable) and (IV) par-

ticulate volume fraction: for example, v2 ¼
def jDj

jXj, where jDj is the volume occupied by the particles, and jXj is
the total volume of the material (one variable). Therefore we have a total of seven design variables,

K ¼ ðj2; l2;AR; v2; s1; s2; s3Þ. Although we will not consider the matrix material�s properties as being free

variables, this poses no additional difficulties.
2. Characteristic of such objectives

Some key difficulties encountered in such problems, which we now discuss, are (1) nonconvexity of
objective functions such as in Eq. (1.1), due to the variety of design variables, (2) objective functions which

are not continuously differentiable because of active–inactive constraints and (3) sample size effects, which

induce a degree of stochastic behavior into the objective function.

2.1. Nonconvexity

Consider a one-dimensional heterogeneous bar composed of two materials, E1 and E2 (transverse bonded

strips), each occupying volume fractions v1 and v2 (v1 þ v2 ¼ 1), respectively. The effective mechanical re-

sponse for such a system, E�, hriX ¼defE�h�iX, is the harmonic average, which can be written as E� ¼ sE1

ð1�v2Þsþv2
,

where s ¼ E2

E1
, Clearly, there is no unique combination of s and v2 to produce the same desired effective re-

sponse. Consider the objective, P ¼ E��E�;D

E�;D

� �2
, where E�;D is the desired effective response. If one were to

pursue a standard Newton-type multivariate search for a new design increment one would construct the

following Hessian system for the two design variables, K ¼ ðs; v2Þ:
1 At the microscale, the mechanical properties of microheterogeneous materials are characterized by a spatially variable elasticity

tensor E. The symbol k � k is an appropriate admissible norm to be discussed later.
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Fig. 1. Left: The behavior of the objective function for E1 ¼ 1 and E�;D ¼ 4. Right: A binary map of the behavior of the determinant of

the Hessian of the objective function for E1 ¼ 1 and E�;D ¼ 4. Here a value of 1 indicates a positive definite Hessian and 0 indicates a

nonpositive Hessian.
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Unfortunately, this system becomes noninvertible throughout the design space, due to the nonconvexity

of the objective function P, as illustrated in Fig. 1. The behavior of such objectives becomes even worse

when more design variables are present, such as in three-dimensional cases involving topological variables

discussed earlier. For more detailed discussions of such issues see Cherkaev [5].

2.2. Size effects

We remark that even if the issues of nonconvexity and nondifferentiability of the objective were not

present, and one were to attempt to apply a gradient-type approach, the construction of numerical de-

rivatives of the objective function can become highly unstable. This is due to the fact that effective responses

of finite sized samples, of equal volume but of different random particle distributions, exhibit mutual

fluctuations, leading to amplified noise in optimization strategies where objective function sensitivities
(derivatives) are needed (Fig. 2). For example, referring to Fig. 2, the effects of fluctuations due to sample

size can be characterized by computing the difference between the smallest value on the right of an arbitrary

design point K0, due to size effects, and the largest value on the left, also due to size effects, resulting in

d� ¼ P�ðK0 þ DKÞ �PþðK0 � DKÞ ð2:2Þ

and computing the difference between the largest value on the right and smallest value on the left, resulting

in

dþ ¼ PþðK0 þ DKÞ �P�ðK0 � DKÞ: ð2:3Þ

Denoting the uncertainty in the objective function�s value at K0 þ DK by UðK0 þ DKÞ ¼defPþðK0 þ DKÞ�
P�ðK0 þ DKÞ and the uncertainty in the objective function�s value at K0 � DK by UðK0 � DKÞ ¼defPþðK0�
DKÞ �P�ðK0 � DKÞ, we have an uncertainty in the sensitivity

06 jdþ � d�j ¼ UðK0 þ DKÞ þUðK0 � DKÞ: ð2:4Þ



Fig. 2. An objective function suffering from size effects.
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Clearly, the effects of the fluctuations are amplified for the sensitivities. Therefore, even for large
samples of randomly dispersed particulate material, which may exhibit slight fluctuations from one

another, the resulting deviations in derivatives can be quite large. For further details see [68,72]. Fur-

thermore, when active–inactive constraints are introduced, as they later will be, the objective function

will become not continuously differentiable throughout the domain, in locations that are indeterminant a

priori. In summary, for the class of problems considered here, gradient methods should be avoided due

to (I) nonconvexity leading to uninvertible Hessians and (II) noise in the numerical derivatives of the

objective function. In addition, a further issue arises, namely nondifferentiability of the constraints, in

particular active–inactive constraints, as well as, in some cases, nondifferentiability of the unconstrained
objective function itself. This further motivates, later in the analysis, a nonderivative (genetic) search

procedure.
3. Introduction of constraints

A drawback of adding particulate material to a homogeneous base matrix is that the presence of second

phase particles will perturb the otherwise smooth stress fields in the matrix, locally amplifying or reducing
the fields throughout the microstructure. Thus, it makes sense to account for this distortion and to attempt

to limit it during the design process.

Consider the deviation of the stress field from its volumetric average, dr ¼ r� hriX, measured in the

following norm (q > 0):

kdrkq
L̂LqðXÞ ¼

def 1

jXj

Z
X
ðdr : drÞq dXP 0: ð3:1Þ
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The physical meaning of this norm, for q ¼ 1, is the standard deviation of the stress field from its volu-

metric average. Higher q indicate more sensitive measures to the differences between the internal field and

its average. A meaningful constraint is

wqPqðKÞ ¼ wqMax 0;
kdrkq

L̂LqðXÞ

TOLqkrkqL̂LqðXÞ

  
� 1

!!
: ð3:2Þ

To add an entire range of ‘‘higher stress moment’’ constraints, we write

wPðKÞ ¼def
XN
q¼1

wqPqðKÞ; ð3:3Þ

where the components of q ¼ ðq1; q2; . . . ; qN Þ and w ¼ ðw1;w2; . . . ;wNÞ are nonnegative. The final augmented

function is

PP ðK;wÞ ¼ kE� �E�;Dk
kE�;Dk

� �q0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Macromoduli

þ wPðKÞ|fflfflffl{zfflfflffl}
Microfield distortion

: ð3:4Þ

For an isotropic objective we write

PP ¼ wj
j� � j�;D

j�;D

� �q0

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Macroscopic bulk

þwl
l� � l�;D

l�;D

� �q0

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Macroscopic shear

þ
XN
q¼1

wqPqðKÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Microfield distortion

: ð3:5Þ

Essentially this is an exterior point (penalty) method to enforce constraints. Let us define the following

penalized function PP ðKK ;w
KÞ ¼defPðKKÞ þ wKPðKKÞ, where (1) PðKKÞ 2 C0ðRN Þ, (2) PðKKÞP 0 and (3)

PðKKÞ ¼ 0, if and only if KK 2 Hf , Hf ¼def the feasible region. We have the following properties, where K�
K is

the minimizer of PP for weight wK and K� is a true minimizer P with the constraints:

ðaÞ PP ðK�
K ;w

KÞ6PP ðK�
Kþ1;w

Kþ1Þ;
ðbÞ PðK�

Kþ1Þ6PðK�
KÞ;

ðcÞ PðK�
KÞ6PðK�

Kþ1Þ;
ðdÞ PðK�

KÞ6PP ðK�
K ;w

KÞ6PðK�Þ;
ðeÞ lim

wK!1
PP ðK�

K ;w
KÞ ¼ PðK�Þ:

ð3:6Þ

The proofs are constructive and follow. By definition

PP ðK�
Kþ1;w

Kþ1Þ ¼ PðK�
Kþ1Þ þ wKþ1PðK�

Kþ1Þ
PPðK�

Kþ1Þ þ wKPðK�
Kþ1Þ

PPðK�
KÞ þ wKPðK�

KÞ ¼
def

PP ðK�
K ;w

KÞ ) ðaÞ:
ð3:7Þ

By definition

PðK�
KÞ þ wKPðK�

KÞ6PðK�
Kþ1Þ þ wKPðK�

Kþ1Þ ð3:8Þ

and

PðK�
Kþ1Þ þ wKþ1PðK�

Kþ1Þ6PðK�
KÞ þ wKþ1PðK�

KÞ: ð3:9Þ
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Adding the two previous results yields

ðwKþ1 � wKÞPðK�
Kþ1Þ6 ðwKþ1 � wKÞPðK�

KÞ ) ðbÞ: ð3:10Þ

Since KK is a minimizer of the augmented form

PðK�
Kþ1Þ þ wKPðK�

Kþ1ÞPPðK�
KÞ þ wKPðK�

KÞ: ð3:11Þ

From part (b) we have PðK�
Kþ1Þ6PðK�

KÞ, which, when combined with the above yields

PðK�
Kþ1Þ þ wKPðK�

KÞPPðK�
Kþ1Þ þ wKPðK�

Kþ1ÞPPðK�
KÞ þ wKPðK�

KÞ ) ðcÞ: ð3:12Þ

For each K,

PðK�Þ ¼defPðK�Þ þ wKPðK�Þ|fflfflfflfflffl{zfflfflfflfflffl}
¼0

PPðK�
KÞ þ wKPðK�

KÞ ¼
def

PP ðK�
K ;w

KÞPPðK�
KÞ ) ðdÞ: ð3:13Þ

Utilizing the previous results, one can show that the method converges. Let fK�
Kg, K 2 Q, be a convergent

subsequence of fK�
Kg, having limit K̂K. Therefore, assuming continuity of P we have limK2Q PðK�

KÞ ¼ PðK̂KÞ.
From the previous results

PP ðK�
Kþ1;w

Kþ1ÞPPP ðK�
K ;w

KÞ; ð3:14Þ

which implies

lim
K2Q

PP ðK�
K ;w

KÞ ¼defPP�
6PðK�Þ ðBy dÞ: ð3:15Þ

Therefore,

PP�ðK�Þ �PðK̂KÞ ¼ lim
K2Q

wKPðK�
KÞ61; ð3:16Þ

which implies limK2Q PðK�
KÞ ¼ 0. Since PðK�

KÞ is continuous, PðK̂KÞ ¼ 0, and therefore K̂K is feasible. K̂K must

be optimal since, K�
K ! K̂K and

PðK̂KÞ ¼ lim
K2Q

PðK�
KÞ6PðK�Þ ) ðeÞ: ð3:17Þ

Remarks: By increasing the penalty weights, we force the augmented form�s sequence to approach the

unaugmented optimum from below. For general properties of exterior point methods see [7] or [45].
4. Related fatigue constraints for microheterogeneous solids

As mentioned during the construction of the distortion constraints, a drawback of adding particulate

material to a homogeneous base matrix is that the presence of a second phase particles will perturb the

otherwise smooth stress fields in the matrix. This locally amplifies the stress field intensity throughout the

microstructure. Under cyclic loading, this can lead to fatigue-induced damage. Therefore, when designing

new solids with heterogeneous microstructure, estimates of the aggregate amount of fatigue damage are

valuable in characterizing the long term performance of the material. Accordingly, we construct con-

straints, representing tolerable damage limits, in a similar way as for the distortion measures.

4.1. Classical fatigue relations

At a material point, the classical Basquin relation for fatigue life estimation are as follows [1]:
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krak ¼ ðkrfk � krmkÞð2NfÞb ) Nf ¼
1

2

krak
krfk � krmk

� �1=b

; ð4:1Þ

which has been extended to a multiaxial stress state by use of Euclidean norms ðkrk ¼def
ffiffiffiffiffiffiffiffiffiffi
r : r

p Þ. Here the

norm of the mean stress is krmk ¼ krmaxþrmink
2

while the norm of the fluctuating stress is krak ¼ krmax�rmink
2

,

where we denote static failure stress by rf and typically, �0:126 b6 � 0:05. Classical relations of this type,
which hold at a material point, are discussed in [57].

4.2. Construction of a constraint

Clearly, from direct numerical computations, say with the finite element method, one can post-process

the stresses, by using Eq. (4.1), directly to compute the estimated fatigue life of every point xk, denoted by

Nfk. Once the Nfk �s are computed, we employ classical Palmgren [55]–Miner [47] accumulated damage re-

lations, jn
k ¼ Max 0; 1� n

Nfk

� �
j0
k and ln

k ¼ Max 0; 1� n
Nfk

� �
l0
k , where j

0
k and l0

k are the undamaged values of

the bulk and shear moduli at xk, respectively, and n is the number of applied load cycles. In the isotropic

case, the damage is simply

ank ¼
def jn

k

j0
k

¼ ln
k

l0
k

¼ Max 0; 1

��
� n
Nfk

��
: ð4:2Þ

The overall fatigue damage is characterized volumetric average, haniX. A fatigue constraint is constructed

first by setting a tolerance, where ideally,

haniX > TOLa ð4:3Þ

which is then incorporated as an active–inactive unilateral condition into a design cost function, which we

intend to minimize ðq0; qF > 0Þ

PP ¼ kE� �E�;Dk
kE�;Dk

� �q0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Macro-objective

þ wFPF|ffl{zffl}
Fatigue damage

; ð4:4Þ

where

wFPF ¼
defwF Max 0;

TOLa � haniX
TOLa

� �� �� �qF

: ð4:5Þ

In the isotropic case, we write

PP ¼ wj
j� � j�;D

j�;D

� �q0

þ wl
l� � l�;D

l�;D

� �q0

þ wFPF: ð4:6Þ

Remark I: As in the case of distortion constraints, the formulation in Eq. (3.5) is an exterior point

(penalty) method to enforce constraints. Therefore, by increasing the penalty weight, we force the aug-

mented form approach the unaugmented optimum from below. In other words, as the penalty parameter is

increased, the exterior point formulation more accurately approximates the original constrained problem.
However, the exterior point formulation becomes harder to minimize with gradient based methods, if they

are applicable, due to ill conditioning. However, this appears to be a nonissue for nonderivative methods.

Remark II: One can restrict the constraint activation to specific ‘‘zones of interest’’ by simply adding a

weighting function during the computation of the average damage, /ðhaniXÞ, where / ¼ 0 outside of the
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zones. For example, such zones could be interfacial regions enveloping the material interfaces between the
matrix and particles.

4.3. Qualitative behavior of the fatigue constraints

One way to qualitatively characterize the aggregate fatigue damage is via concentration tensors, which

provide a measure of the deviation away from the mean fields throughout the material. One may write

hriX ¼ 1
jXj ð
R
X1
rdXþ

R
X2
rdXÞ ¼ v1hriX1

þ v2hriX2
, where X1 is the volume of the matrix phase and X2 is

the volume fraction of the second phase, and consequently

hriX ¼ v1hriX1
þ v2hriX2

¼ ððE1 þ v2ðE2 �E1ÞÞ : CÞ : h�iX; ð4:7Þ

where C : h�iX ¼ h�iX2
, C ¼def ð 1v2 ðE2 �E1Þ�1

: ðE� �E1ÞÞ. Thereafter, we may write, for the variation in the

stress, C : E��1 : hriX ¼ E�1
2 : hriX2

, which reduces to E2 : C : E��1 : hriX ¼
def bCC : hriX ¼ hriX2

, where bCC is

known as the stress concentration tensor. Therefore, once either bCC or E� are known, the other can be

determined. Clearly, the microstress fields are minimally distorted when bCC ¼ I . For the matrix, we have

hriX1
¼

hriX � v2hriX2

v1
¼ hriX1

¼ hriX � v2 bCC : hriX
v1

¼ ðI � v2 bCC Þ : hriX
v1

¼ bbCCbCC : hriX: ð4:8Þ

We have for the alternating stresses, hraiX2
¼ bCC : hraiX and hraiX1

¼ bbCCbCC : hraiX, as well as for the mean

stresses hrmiX2
¼ bCC : hrmiX and hrmiX1

¼ bbCCbCC : hrmiX. We remark that the failure stresses, are independent of

the applied loads, since they are material parameters. We remark that the relative decrease in bCC is ac-

companied by a corresponding increase
bbCCbCC, since

ðI � v2 bCC Þ
1� v2

¼ bbCCbCC: ð4:9Þ

In other words, o
bbCCbCC

obCC is a negative-definite tensor function. These previous relations simply indicate that when

there is amplification of the stresses somewhere in the microheterogeneous solid there is also simultaneous

shielding (‘‘de-amplification’’) somewhere in the solid. For the second phase

Nf2 ¼
1

2

khraiX2
k

khrf2iX2
k � khrmiX2

k

 !1=b2

¼ 1

2

k bCC : hraiXk
khrf2iX2

k � k bCC : hrmiXk

 !1=b2

; ð4:10Þ

which is a monotonically increasing function of bCC . For the first phase,

Nf1 ¼
1

2

khraiX1
k

khrf1iX1
k � khrmiX1

k

 !1=b1

¼ 1

2

kbbCCbCC : hraiXk

khrf1iX1
k � kbbCCbCC : hrmiXk

0@ 1A1=b1

; ð4:11Þ

which is a monotonically decreasing function of bCC . The rates of increase and decrease of the fatigue lives

are controlled by the magnitudes of the b�s.
5. Nonconvex–nonderivative genetic search

Due to difficulties with objective function nonconvexity and nondifferentiability we employ a certain

class of nonderivative search methods, usually termed ‘‘genetic’’ algorithms (GA), which stem from the
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pioneering work of John Holland and his colleagues starting the late 1960s [31]. For reviews of such
methods, the interested reader is referred to Goldberg [27], Davis [6] or Kennedy and Eberhart [38]. A

recent overview of the state of the art of the field can be found in a collection of recent articles, edited by

Goldberg and Deb [28]. In Zohdi [67,74] a GA was developed by combining the basic ideas used in the GA

community. Presently, we build upon this algorithm further. The central idea is that the microscale pa-

rameters form a genetic string and a survival of the fittest algorithm is applied to a population of such

strings. The overall process is (I) a population (S) of different designs (strings) are generated at random with

the design space, represented by a (‘‘genetic’’) string of the design (N ) parameters, (II) the performance of

each design is tested, (III) the designs are ranked from top to bottom according to their performance, (IV)
the best designs are mated pairwise producing two offspring, i.e. each best pair exchanges information by

taking random convex combinations of the design components of the parents� genetic strings, (V) the worst
performing genetic strings are eliminated and new replacement designs (strings) are introduced into the

remaining population of best performing genetic strings and (VI) steps (I–V) are then repeated. An

implementation of such ideas is as follows:

• Step 1: Randomly select a population of N starting genetic strings, Ki, (i ¼ 1; . . . ;N ), where Ki ¼def fKi
1;

Ki
2;K

i
3;K

i
4;K

i
5;K

i
6;K

i
7; . . .g ¼ fji

2; l
i
2; v

i
2;ARi; si1; s

i
2; s

i
3; . . .g.

• Step 2: Compute the fitness of each string, PðKiÞ, (i ¼ 1; . . . ;N ).

• Step 3: Rank the genetic strings: Ki, (i ¼ 1; . . . ;N ).

• Step 4: Mate the nearest pairs and produce two offspring, (i ¼ 1; . . . ;N )

ki ¼defUðIÞKi þ ð1� UðIÞÞKiþ1 ð5:1Þ
and

kiþ1 ¼defUðIIÞKi þ ð1� UðIIÞÞKiþ1; ð5:2Þ
2 The mon
where 06UðIÞ;UðIIÞ
6 1, with UðIÞ and UðIIÞ being different random values for each component.
• Step 5: Kill off the bottom M < N strings and keep the top K < N parents ðK offspringþ K parentsþ
M ¼ NÞ.

• Step 6: Repeat Steps 1–6 with the top gene pool (K offspring and K parents), plus M new, randomly

generated, genetic strings.

Remark I: Previous numerical studies by the author, Zohdi [67,74], have found that the retention of the

top old fit genetic strings is critical. For sufficiently large populations, the benefits of parent retention

outweigh any disadvantages of ‘‘inbreeding’’, i.e. a stagnant population, provided sufficient new genes are

introduced after each generation. For more details on this so-called ‘‘inheritance property’’ see [6,54] or

[38]. This stems from the fact that the objective functions are highly nonconvex and there exists a strong
possibility that the inferior offspring will replace superior parents. Retaining the top parents is not only less

computationally expensive, since these designs do not have to be reevaluated in future generations, it is

theoretically superior. 2 With parent retention, the minimization of the cost function is guaranteed to be

monotone with increasing generations [74].

Remark II: The overall genetic minimization strategy can be enhanced several ways. For example, every

few generations, the search domain can be restricted and rescaled to be centered around the best current

design.
otonicity is obvious since the top design will not be replaced until a better design is found.
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Remark III: Typically, for samples with a finite number of particles, there will be slight variations in the
performance for different random realizations. In order to stabilize the objective function�s value with

respect to the randomness of the realization, for a fixed design (KI ), a regularization procedure is applied,

whereby the performances of a series of different random realizations are averaged until the (ensemble)

average converges, i.e. until the following condition is met (i ¼ 1; 2; . . . ;E):

1

E þ 1

XEþ1

i¼1

PðiÞðKIÞ
					 � 1

E

XE
i¼1

PðiÞðKIÞ
					6TOL

1

E þ 1

XEþ1

i¼1

PðiÞðKIÞ
					

					: ð5:3Þ

The index i indicates a random realization that has been generated and E indicates the total number of

realizations tested. In order to implement this in Step 2 of the algorithm, one simply replaces ‘‘Compute’’

with ‘‘Ensemble-compute’’, which requires a further inner loop to test the performance of multiple real-

izations. Similar ideas have been applied to randomly dispersed particulate solids in Zohdi [67]. The
number needed to stabilize the objective function is far less than that needed to stabilize the gradients, and

higher order derivatives that would be needed if a gradient-type approach were even possible.
6. Numerical examples

Throughout the numerical examples, we considered the following objective function:

PP ¼ wj
j� � j�;D

j�;D

� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Macrobulk

þwl
l� � l�;D

l�;D

� �2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Macroshear

þ
X10
q¼1

wqPqðKÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Microdistortion

þ wFPF|ffl{zffl}
Microfatigue

: ð6:1Þ

A meaningful measure to track during the minimization process is the percentage error of the moduli from

the desired target,
ffiffiffiffiffiffiffi
PP

p
. To illustrate the algorithm, we considered a cube of matrix material, with nor-

malized dimensions 1 · 1 · 1, containing randomly distributed inhomogeneities. We considered the fol-
lowing boundary conditions on the exterior of the cube: ujoX ¼ E � x, Eij ¼ 0:001, i; j ¼ 1; 2; 3, where x is a

position vector to the boundary of the cube. During the upcoming numerical experiments we tested larger

and larger samples of material, keeping the volume fraction fixed and found that results stabilized when

approximately 20 (nonintersecting) particles were used in a sample, i.e. the same final designs occurred

using larger samples. Also, over the course of such tests the finite element meshes were repeatedly refined,

and a mesh density of approximately 9 · 9 · 9 trilinear hexahedra (approximately between 2200 and 3000

DOF for the vector-valued balance of momentum) per particle was found to deliver mesh independent

results. For 20 particles, this resulted in 46,875 DOF. This mesh density delivered mesh independent results
over the course of the numerical experiments. In other words, the same final designs occurred using finer

meshes. During the computations, a ‘‘2/5’’ Gauss rule was used, whereby elements containing material

discontinuities had increased Gauss rules (5 · 5 · 5) to enhance the resolution of the internal geometry,

while elements with no material discontinuities had the nominal 2 · 2 · 2 rule. For details of such meshing

procedures, see [67,69–72]. To illustrate the search process, continuing with 20 particle samples, the effective

response produced by a sample containing a particulate stiffener, 22% boron (l1 ¼ 230 GPa j1 ¼ 172 GPa)

spheres in an aluminum matrix (l1 ¼ 25:9 GPa j1 ¼ 77:9 GPa) was first computed. 3 The effective response

was approximately j� ¼ 96 GPa and l� ¼ 42 GPa. Our objective was to find alternative microstructures
which could deliver the same effective response (j�D ¼ 96 GPa and l�D ¼ 42 GPa), while obeying the
3 Material combinations such as aluminum/boron are relatively common due to the ease of forming the aluminum matrix and the

lightweight of the boron.



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

F
IT

N
E

S
S

GENERATION

w=1
w=100

w=1000

Fig. 3. The top design behavior for various weights after 21 generations. Here fitness ¼def
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. After every four generations the search

domain was restricted and rescaled to be centered around the best current design.
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constraints, to a specified tolerance. The constraint tolerance for fatigue was TOLa ¼ 0:9 (10% damage)

and for the distortion constraints, TOLq ¼ 0:1, 8q. The matrix material was fixed to be aluminum, however,

all other design parameters, with the exception of the particle orientations, since isotropic objectives were

sought, were allowed to vary. The macroscopic weights were fixed at wj ¼ wl ¼ 1, while the penalty weights

were increased. The volume fraction wascontrolled via a particle/sample size ratio (one variable), defined by

a subvolume size V ¼def L�L�L
N , where N is the number of particles in the entire sample and where L is the

length of the (cubical) sample, L� L� L. A generalized diameter is defined, r, which is the diameter of

the smallest sphere that can enclose a single particle of possibly nonspherical shape. The ratio between the

generalized diameter and the subvolume is one design parameter defined by f¼def r
V 1=3. The a priori constraints

on the design search space were

0:1j1 ¼ j�
2 6 jðiÞ

2 6 jþ
2 ¼ 10j1;

0:1l1 ¼ l�
2 6 lðiÞ

2 6 lþ
2 ¼ 10l1;

0:1 ¼ AR�
6ARðiÞ

6ARþ ¼ 10;

1 ¼ s� 6 sðiÞ 6 sþ ¼ 10;

0:2 ¼ f� 6 fðiÞ 6 fþ ¼ 0:4:

ð6:2Þ

For the fatigue constraints, we characterized the maximum and minimum applied boundary loading in the
form 4 umaxjoX ¼ Emax � x ¼ aþEij, and uminjoX ¼ Emin � x ¼ a�Eij, i; j ¼ 1; 2; 3. For purposes of numerical

experiment, the cyclic loading amplitudes were set to a� ¼ 0:9 and aþ ¼ 1:25. The Basquin exponents were

chosen to be the same for both materials, b1 ¼ �0:06 and b2 ¼ �0:06, in order to isolate the effects of the

seven micromechanical variables introduced earlier on the fatigue behavior. The number of applied cycles
4 By superposition, one only needs to compute one loading.
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was set to n ¼ 105. The failure stresses for the particles, rf2, were set to rf2;ij ¼ 1 GPa, i; j;¼ 1; 2; 3, while for
the matrix rf1, we selected rf1;11 ¼ rf1;22 ¼ rf1;33 ¼ 8� 107 and rf1;12 ¼ rf1;23 ¼ rf1;31 ¼ 4� 107.

The number of genetic strings was set to 20, keeping the offspring of the top six parents after each

generation. This resulted in eight new strings being introduced after each generation. After every four

generations the search domain was restricted and rescaled to be centered around the best current design.

For various penalty weights, the procedure converged to a stable best design in no more than 21 genera-

tions (Fig. 3). The total number of global evaluations was T þ ðG� 1Þ � ðT � QÞ ¼ 300, where G ¼ 21 was

the number of generations, T ¼ 20 was the total number of genetic strings in the population, and Q ¼ 6 is
the number of parents kept after each generation. As the theory predicted (Box (3.6)), at the converged state
Fig. 4. Top: a realization of the optimal design. Bottom: a zoom on an individual particle.



Table 3

The number of samples needed for ensemble average stabilization for various penalty weights

Penalty Total samples Total samples/genetic string

wq ¼ wF ¼ 1 5616 18.720

wq ¼ wF ¼ 100 5251 17.503

wq ¼ wF ¼ 1000 4837 16.123

Table 1

Top design after 21 generations

Penalty
ffiffiffiffiffiffiffi
PP

p
j� (GPa) l� (GPa) haiX

wq ¼ wF ¼ 1 0.01260 93.464 40.290 0.92155

wq ¼ wF ¼ 100 0.01780 92.498 37.716 0.92121

wq ¼ wF ¼ 1000 0.03208 94.195 38.728 0.90430

Note: haiX ¼ 1 means no estimated damage due to fatigue.

Table 2

Top design after 21 generations

Penalty j2=j1 l2=l1 f v2 AR s1 s2 s3
ffiffiffiffiffiffiffi
PP

p

wq ¼ wF ¼ 1 4.9755 6.0648 0.22680 0.07524 0.9392 4.9036 5.3449 5.7754 0.01260

wq ¼ wF ¼ 100 4.1183 6.0271 0.23042 0.07898 1.0065 5.7951 5.0898 3.0565 0.01780

wq ¼ wF ¼ 1000 5.2445 4.9966 0.23714 0.08668 0.9513 5.6470 6.9010 3.7959 0.03208
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(generation 21), with increasing penalty weights PP ðK�
K ;w

KÞ converges from below. There were no changes
in the results for further increases in the penalty weights beyond wq ¼ wF ¼ 1000. Clearly, the constraints

restrict the objective from ever attaining the original spherical microstructure, and thus effective properties,

j� ¼ 96 GPa and l� ¼ 42 GPa, that deliver a zero value of the unconstrained objective function (Fig. 4).

Various statistics pertaining to these test are tabulated in Tables 1–3.
7. Concluding remarks

In this work a GA was developed which can handle difficulties due to objective function nonconvexity

and lack of regularity characterizing the constrained design of random particulate media. The computa-

tional approach was constructed in such a way that it can be used in conjunction with a variety of methods

designed for large-scale micro–macro simulations, such as multiscale methods [2,4,8–18,64]; Voronoi cell

methods [20–26,43,44,49,56]; transformation methods [46,50], multipole methods adapted to such problems

by Fu et al. [19]; partitioning methods [29,30,32–37]; adaptive hierarchical modeling methods [48,51–53,63,65]

and micro–macro domain decomposition [3,39–42,66,69–71,73].
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