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There exists a variety of difficulties in the computational design of macroscopic solid
material properties formed by doping a homogeneous base matrix material with
randomly distributed particles having different properties. Three primary problems
are

(1) the wide array of free microdesign variables, such as particle topology, property
phase contrasts and volume fraction, which render the associated objective
functions to be highly non-convex;

(2) that the associated objective functions are not differentiable with respect to
design variables, primarily due to prescribed constraints, such as prespecified
restrictions on the microscale stress-field behaviour; and

(3) the effective responses of various finite-sized samples, of equal volume but of
different random particle distributions, exhibit mutual fluctuations, leading to
amplified noise in optimization strategies where objective function sensitivities
or comparisons are needed.

The focus of this paper is the development of a statistical genetic algorithm which
can handle difficulties due to non-convexity, lack of regularity and size effects. Theo-
retical properties of the overall approach are investigated. Semi-analytical and large-
scale numerical examples, involving finite-element type discretizations, are given to
illustrate its practical application.

Keywords: genetic algorithms; random particulates; inverse problems

1. Basic concepts in macro-micromodelling

A growing variety of new solid materials possessing random heterogeneous micro-
structure is used in modern applications. An extensive review of the state of the art
in the analysis of random heterogeneous media can be found in Torquato (1991, 1997,
1998, 2002). One class of such materials consists of particles or fibres suspended in a
binding matrix material. The mechanical properties of microheterogeneous materials
are characterized by a spatially variable elasticity tensor E, while the (homogenized)
effective macroscopic response is described via 〈σ〉Ω = E

∗ : 〈ε〉Ω, where

〈·〉Ω
def=

1
|Ω|

∫
Ω

· dΩ,

One contribution of 12 to a Theme ‘Micromechanics of fluid suspensions and solid composites’.
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and where σ and ε are the stress and strain tensor fields within a statistically rep-
resentative volume element (RVE) of volume |Ω|. The quantity E

∗, known as the
effective property, is the elasticity tensor used in usual structural scale analyses.
Similarly, one can describe other effective quantities, such as conductivity or dif-
fusivity, relating other volumetrically averaged field variables. It is emphasized that
effective quantities such as E

∗ are not material properties, but relations between aver-
ages. More appropriate terms might be ‘apparent properties’, which are discussed in
depth in Huet (1990). However, to be consistent with the literature, we continue to
refer to E

∗ by the somewhat inaccurate term effective ‘property’.
Ideally, one would like to evaluate a new material’s behaviour by numerical simula-

tions, with the primary goal being to accelerate expensive trial and error laboratory
tests. However, there exist a variety of difficulties in the computational design of
macroscopic solid material properties formed by doping a base matrix material with
randomly distributed particles of different phases. Three primary problems are

(1) the wide array of free microdesign variables, such as particle topology, vol-
ume fraction and mechanical property phase contrasts, which render associated
objective functions to be highly non-convex;

(2) that the associated objective functions are not continuously differentiable with
respect to design space, primarily due to microscale design constraints, such as
restrictions on microscale stress-field behaviour; and

(3) the effective responses of various finite-sized samples, of equal volume but of
different random distributions of the particulate matter, exhibit mutual fluc-
tuations, leading to amplified noise in optimization strategies where objective
function sensitivities or comparisons are needed.

The effects in problem 3 become even more critical when computing design sensitiv-
ities or comparisons needed in optimization strategies.

The presented work concentrates on the parametrization of microscale parameters
inherent in such materials, with the goal of computational optimization of material
microstructure. The outline of the presentation is as follows. A computational mate-
rial design (inverse) formulation is given. Attention is drawn to some of the difficul-
ties encountered, i.e. non-convexity and non-differentiability of objective functions,
as well as size effects. A statistical genetic algorithm, which can handle difficulties
due to non-convexity, lack of regularity and size effects is then developed. Numerical
examples are then presented.

2. Computational material design

We are primarily concerned with the construction of an inverse problem, where com-
binations of particulate and matrix materials are sought which minimize the following
normalized objective function

Π =
(

‖E
∗ − E

∗,D‖
‖E∗,D‖

)p

, (2.1)

where E
∗,D is a prespecified desired effective response, E

∗ is the effective response
produced by a trial microstructure, and ‖ · ‖ is an appropriate admissible norm to be
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Figure 1. Parametrization of a generalized ellipsoid, with
various parametrized cross-sections shown.

discussed later. A microstructural design can be defined through an N -tuple design
vector, denoted Λ

def= (Λ1, Λ2, . . . , ΛN ), consisting of the following components, for
example: the mechanical properties of the foreign particulate matter; the volume
fraction of the foreign particulate matter; and the topology of the foreign particulate
matter. Ellipsoidal shapes are qualitatively useful, since the geometry can closely
represent a variety of particulate types, for example, platelets when the ellipsoids
are oblate or needles (discontinuous fibres) when the ellipsoids are prolate. Such
shapes can be generalized by considering (figure 1)(

|x − x0|
r1

)s1

+
(

|y − y0|
r2

)s2

+
(

|z − z0|
r3

)s3

= 1, (2.2)

where the s are exponents. Values of s < 1 produce non-convex shapes, while s > 2
values produce ‘blocklike’ shapes. The following are free variables.

Particulate mechanical properties: for example, assuming local isotropy of the
particles, the bulk and shear moduli, κ2 and µ2 (two variables).

Particulate topology: for example, the polynomial order of generalized ellipsoids,
s (three variables).

Particulate aspect ratio: for example, defined by A
def= r1/r2 = r1/r3, where

r2 = r3, A > 1 for prolate geometries and A < 1 for oblate shapes (one vari-
able).

Particulate volume fraction: for example, v2
def= |∆|/|Ω|, where |∆| is the vol-

ume occupied by the particles, and |Ω| is the total volume of the material (one
variable).

Particulate orientation: for example, within the last decade there have viable
been processing methods developed to control the orientation of particulate matter
by coating them with a conducting liquid material and introducing them into the
molten matrix material (three free variables, i.e. Euler angles). Thereafter, an
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electrical current is applied, forcing the particles to align themselves along the
field lines. This can produce globally anisotropic properties (see Michaud (1992)
for manufacturing details of this and alternative processes).

Matrix mechanical properties: for example, if the matrix material is variable,
assuming local isotropy of the matrix material, κ1 and µ1 (two variables).

Therefore, in this linear elasticity formulation, we have 12 microdesign variables. We
remark that for both manufacturing and physical reasons, generally, each design vari-
able will have a constrained search space. For example, none of the design variables
in this formulation can be negative, with the exception of the orientation angles; fur-
thermore, the volume fraction must be less than one. Further discussions of inverse
formulations of this kind can be found in Hyun & Torquato (2001) and Torquato &
Hyun (2001).

3. Mathematical setting

In order to drive material design algorithms, an effective property E
∗ for each trial

microstructural design vector must be generated. This computation requires a some-
what precise mathematical statement. Consider a sample of heterogeneous material
occupying an open bounded domain in Ω ∈ R

3, under a given set of specified bound-
ary loadings. Its boundary is denoted ∂Ω. The body is in static equilibrium under the
action of body forces, f , and surface tractions, t. The boundary ∂Ω = Γu ∪ Γt con-
sists of a part Γu and a part Γt on which displacements and tractions are respectively
prescribed. Following standard notation, H1(Ω) is denoted as the usual space of func-
tions with generalized partial derivatives of order one or less in L2(Ω). The symbol

H1(Ω) def= [H1(Ω)]3

is defined as the space of vector-valued functions whose components have generalized
partial derivatives up to one in L2(Ω) def= [L2(Ω)]3. The symbol ‘u|∂Ω’ is used for
generalized boundary values, for example, for specified boundary displacements.
Throughout the analysis, the microstructure is assumed to be perfectly bonded. A
general variational boundary-value representation is given by finding u ∈ H1(Ω),
u|Γu = d, such that∫

Ω

∇v : E : ∇u dΩ =
∫

Ω

f · v dΩ +
∫

Γt

t · v dA, ∀v ∈ H1(Ω), v|Γu = 0. (3.1)

The data are assumed to be such that f ∈ L2(Ω) and t ∈ L2(Γt), but less smooth
data can be considered without complications. It is convenient to consider the sam-
ple domain (Ω) as a cube, although, strictly speaking, this is not necessary. A com-
monly accepted macro/micro criterion used in effective property calculations is the
well-known Hill (1952) condition 〈σ : ε〉Ω = 〈σ〉Ω : 〈ε〉Ω. Hill’s condition dictates the
size requirements on the sample for it to be statistically representative. The classical
argument is as follows. For any perfectly bonded heterogeneous body, in the absence
of body forces (f = 0), two physically relevant loading states satisfy Hill’s condi-
tion. They are (i) purely linear boundary displacements of the form u|∂Ω = E · x,
which implies 〈ε〉Ω = E, and (ii) pure boundary tractions in the form t|∂Ω = L · n,
which implies 〈σ〉Ω = L, where E and L are constant strain and stress tensors,
respectively. Clearly, for Hill’s condition to be satisfied within a macroscopic body
under non-uniform external loading, the sample must be large enough to possess
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small boundary field fluctuations relative to its size. Therefore, applying type (i)
or (ii) boundary conditions to a large sample is a way of reproducing approximately
what may be occurring in a statistically representative mesoscopic subdomain of
material within a macroscopic body. Usually, in order to justify the interchange-
able use of either boundary loading, the sample must be large with respect to the
inhomogeneities. Explicitly, to determine E

∗, one specifies six linearly independent
loadings of the form (i) u|∂Ω = E(I→VI) · x or (ii) t|∂Ω = L(I→VI) · n, where E(I→VI)

and L(I→VI) are symmetric second-order strain and stress tensors, with spatially con-
stant components. Each independent loading state provides six equations, for a total
of 36, which are used to determine the tensor relation between average stress and
strain, E

∗. If the effective response is assumed to be isotropic, then only one test
loading (instead of usually six), possessing non-zero dilatational (1

3 trσ and 1
3 tr ε)

and deviatoric components (σ′ and ε′), is necessary to determine the effective bulk
and shear moduli, which can be defined by

3κ∗ def=
〈1
3 trσ〉Ω

〈1
3 tr ε〉Ω

and 2µ∗ def=

√
〈σ′〉Ω : 〈σ′〉Ω

〈ε′〉Ω : 〈ε′〉Ω
.

Remark 3.1. Difficulties arise whenever one attempts to design the effective
mechanical properties of particulate materials, which on a practical level involves
finite-sized samples possessing a irregular heterogeneous microstructure. These diffi-
culties are discussed next.

4. Minimization methods

Following a standard Newton-type multivariate search, a new design increment,
∆ = (∆Λ1, ∆Λ2, . . . , ∆ΛN ) for a microstructural design vector Λ, is achieved by
solving the system [H]{∆Λ} = −{g}, where [H] is the Hessian matrix (N ×N), with
components

Hij =
∂2Π(Λ)
∂Λi∂Λj

,

{g} is the gradient (N × 1), with components gi = ∂Π(Λ)/∂Λi and where {∆Λ} is
the design increment (N ×1), with components ∆Λi. After the design increment has
been solved for, one then forms an updated design vector, Λnew = Λold + ∆Λ, and
the process is repeated until ‖Π‖ � tol. Explicitly, the incremental system is


∂2Π(Λ)
∂Λ1∂Λ1

∂2Π(Λ)
∂Λ1∂Λ2

∂2Π(Λ)
∂Λ1∂Λ3

∂2Π(Λ)
∂Λ1∂Λ4

. . .

∂2Π(Λ)
∂Λ2∂Λ1

∂2Π(Λ)
∂Λ2∂Λ2

∂2Π(Λ)
∂Λ2∂Λ3

∂2Π(Λ)
∂Λ2∂Λ4

. . .

∂2Π(Λ)
∂Λ3∂Λ1

∂2Π(Λ)
∂Λ3∂Λ2

∂2Π(Λ)
∂Λ3∂Λ3

∂2Π(Λ)
∂Λ3∂Λ4

. . .

∂2Π(Λ)
∂Λ4∂Λ1

∂2Π(Λ)
∂Λ4∂Λ2

∂2Π(Λ)
∂Λ4∂Λ3

∂2Π(Λ)
∂Λ4∂Λ4

. . .

...
...

...
...

∂2Π(Λ)
∂ΛN∂Λ1

∂2Π(Λ)
∂ΛN∂Λ2

∂2Π(Λ)
∂ΛN∂Λ3

∂2Π(Λ)
∂ΛN∂Λ4

. . .







∆Λ1
∆Λ2
∆Λ3
∆Λ4

...
∆ΛN




= −




∂Π(Λ)
∂Λ1

∂Π(Λ)
∂Λ2

∂Π(Λ)
∂Λ3

∂Π(Λ)
∂Λ4

...
∂Π(Λ)
∂ΛN




. (4.1)
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(a) Difficulties due non-convexity

A severe difficulty is that the system in equation (4.1) becomes non-invertible
throughout the design space, due to the non-convexity of the objective function Π.
We illustrate the problem of non-convexity via a simple one-dimensional example.
Consider a simple one-dimensional bar of length L composed of random particles,
i.e. strips in one dimension. There are a total of N strips: N2 dark strips, each
of thickness a, and N1 white strips representing the rest of the material. Young’s
modulus E2 corresponds to the ‘particles’, while E1 corresponds the ‘matrix’. Sup-
pose one wishes to design an effective response, E∗, of such a structure, defined by
〈σ〉Ω = E∗〈ε〉Ω. Consider the two-point boundary-value problem

d
dx

(
E

du

dx

)
= 0, u(0) = 0, u(L) = E × L,

where E is a constant. One finds that the effective response is the harmonic average,
which can be written as

E∗ =
τE1

(1 − v2)τ + v2
, (4.2)

where τ = E2/E1, v1 + v2 = 1 and v2 = N2a/L. Clearly, there is no unique combi-
nation of τ and v2 to produce the same desired effective response. Consider

Π =
(

E∗ − E∗,D

E∗,D

)2

, (4.3)

where E∗,D is a desired effective response. Following a standard Newton-type mul-
tivariate search (a new design increment), one would obtain the following Hessian
system for the two design variables τ = E2/E1 and v2:


∂2Π(τ, v2)

∂τ2

∂2Π(τ, v2)
∂τ ∂v2

∂2Π(τ, v2)
∂v2 ∂τ

∂2Π(τ, v2)
∂v2

2




{
∆τ

∆v2

}
= −




∂Π(τ, v2)
∂τ

∂Π(τ, v2)
∂v2


 . (4.4)

However, this system becomes non-invertible throughout the design space, due to
the non-convexity of the objective function Π. For an example see figure 2. For more
details on non-uniqueness of solutions and non-convexity of the associated objective
functions, see Cherkaev (2000).

(b) Local field design constraints

Consider the deviation of the stress field from its volumetric average, δσ = σ −
〈σ〉Ω, which leads to

〈σ : σ〉Ω =
1

|Ω|

∫
Ω

σ : σ dΩ = 〈σ〉Ω : 〈σ〉Ω +
1

|Ω|

∫
Ω

δσ : δσ dΩ � 0. (4.5)

Therefore
〈σ : σ〉Ω − 〈σ〉Ω : 〈σ〉Ω

〈σ : σ〉Ω
=

〈δσ : δσ〉Ω

〈σ : σ〉Ω
� 0. (4.6)
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Figure 2. The behaviour of the objective function for E1 = 1 and E∗,D = 1.75.

In order to incorporate the deviation in a cost function, we introduce a tolerance,
tolσ, where, ideally, √

〈δσ : δσ〉Ω

〈σ : σ〉Ω
� tolσ . (4.7)

If the normalized deviation exceeds tolσ, then the level of exceedance is incorporated
as a multilateral constraint to the macroscopic objectives by

Π =
(

‖E
∗ − E

∗,D‖
‖E∗,D‖

)p

︸ ︷︷ ︸
macro-objective

+ wσ

(√
(〈δσ : δσ〉Ω)/(〈σ : σ〉Ω)

tolσ
− 1

)q

︸ ︷︷ ︸
microfield smoothness

, (4.8)

where p and q are non-negative and where wσ = 0 if

〈δσ : δσ〉Ω

〈σ : σ〉Ω
� tolσ

and wσ > 0 otherwise. Detailed examples will be given shortly.

(c) Difficulties due to non-differentiability

Due to the presence of design constraints, the objective may be non-differentiable
independent of the problem with non-convexity. For most complicated systems, usu-
ally finite-difference approximations of the gradient and Hessian components are
constructed with respect to the design parameters. The finite-difference size for the
approximate numerical derivatives, which is different for each component, is denoted
hΛi

. In a practical setting, for example, for each variable, the numerical derivative
step sizes are scaled to the size of the current value of that variable, by a small
number 0 < θ � 1, θ × Λi = hΛi . Numerically, the components of the gradient and
Hessian can be approximated by the following second-order central finite-difference
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stencils such as
∂2Π(Λ)
∂Λi ∂Λj

≈
Π(Λ1, Λ2 . . . Λi + hΛi

, . . . Λj + hΛj
, . . . ΛN )

4hΛi
hΛj

+
Π(Λ1, Λ2 . . . Λi − hΛi , . . . Λj − hΛj , . . . ΛN )

4hΛihΛj

−
Π(Λ1, Λ2 . . . Λi − hΛi

, . . . Λj + hΛj
, . . . ΛN )

4hΛihΛj

+
Π(Λ1, Λ2 . . . Λi + hΛi

, . . . Λj − hΛj
, . . . ΛN )

4hΛihΛj

.

(4.9)

The number of objective function evaluations necessary to form the Hessian and
gradient is 2N2 + 1, where N is the number of microstructural design variables.
This stems from the fact that one needs 2(N2 − N) objective evaluations for the
off-diagonal terms of the Hessian, 2N for the diagonal terms, and one evaluation
for the base point (the current design). Therefore, even with a small number of
design variables the number of objective function evaluations can be quite large. For
example, with the 12 microstructural variables introduced earlier, N = 12, and one
has 2N2 + 1 = 2(12)2 + 1 = 289 objective function evaluations per search step. It is
clear that the construction of the discrete Hessian is the main expense. There exist
a variety of quasi-Newton methods, which in some manner attempt to approximate
the Hessian in an inexpensive way (see Gill et al . 1995). However, regardless of
the reduction in the number costly objective function evaluations, such procedures
require an immense amount of effort, which grows dramatically with sample size.
Implicitly, such objective functions require a sufficient degree of regularity for the
derivatives to make sense. For example, due to the fact that design constraints are
present, there are many points throughout the domain where the objective function
is not twice differentiable, implying

∂2Π(Λ)
∂Λi∂Λj


= ∂2Π(Λ)
∂Λj∂Λi

,

thus rendering the Hessian matrix non-symmetric. This implies that the second-order
finite-difference stencils are insufficient, since they inherently construct a symmetric
approximation to the Hessian. Therefore, their use to construct the numerical Hessian
can only be justified near smooth convex optima. To put it succinctly, such methods
are not robust. For an investigation of the performance of gradient methods for the
design of materials possessing random microstructure we refer the reader to Zohdi
(2001, 2002a).

5. Non-convex–non-derivative genetic search

The lack of robustness of classical gradient based deterministic optimization processes
can be rectified by application of a family of methods, usually termed ‘genetic’ algo-
rithms. Genetic algorithms are search methods based on the principles of natural
selection and, as such, they are highly probabilistic. There is a variety of such meth-
ods, which employ concepts of species evolution, such as reproduction, mutation and
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Figure 3. (a) A characterization of the class of objective functions of interest.
(b) A loss of superior older genetic strings if the top parents are not retained.

crossover. Such methods stem from the work of John Holland and his colleagues in
the late 1960s and early 1970s at the University of Michigan (Holland 1975). For
reviews of such methods, the interested reader is referred to Goldberg (1989), Davis
(1991) and Onwubiko (2000). A recent overview of the state of the art of the field can
be found in a collection of recent articles, edited by Goldberg & Deb (2000). In Zohdi
(2002b) a genetic algorithm was developed by combining the basic ideas used in the
Genetic algorithm community. Specifically, genetic-type algorithms were developed
for non-convex inverse problems of micro-macromaterials design for non-stochastic
problems without constraints. Presently, we build upon this algorithm further and
apply it to the more complicated random systems, with constraints, of interest here.
The key conceptual feature is that the microstructural parameters form a ‘genetic
string’. Thereafter, evolutionary concepts are applied to a population of such strings.
The algorithm is straightforward and is as follows:

Step 1 randomly select n starting genetic strings Λi (i = 1, . . . , N):
Λi def= {Λi

1, Λ
i
2, Λ

i
3, Λ

i
4, Λ

i
5 . . . , }

(for example: Λi def= {κi
2, µ

i
2, v

i
2, A

i, si . . . })

Step 2 compute fitness (Π(Λi)) of each genetic string: (i = 1, . . . , N)

Step 3 rank the genetic strings, Λi (i = 1, . . . , N)

Step 4 mate nearest pairs (produce offspring) (i = 1, . . . , N)

λi def= Φ(I)Λi + (1 − Φ(I))Λi+1, λi+1 def= Φ(II)Λi + (1 − Φ(II))Λi+1,

0 � Φ(I), Φ(II) = RAND � 1 (different for each component)

Step 5 enforce design constraints: κ
(−)
2 � κi

2 � κ
(+)
2 , µ

(−)
2 � µi

2 � µ
(+)
2 , . . .

Step 6 kill off bottom m < n strings. Optional: keep top k parents

Step 7 repeat with top gene pool plus m new genetic strings.

We remark that the definition of ‘fitness’ of a genetic string in this algorithm
indicates the value of the objective function. In other words, the most fit genetic
string is simply the one with the smallest objective function. Steps 1–7, which are
associated with the genetic part of the overall algorithm, attempt to collect multiple
local minima.† At first glance, it seems somewhat superfluous to retain even the top

† It is remarked that if the function Φ is allowed to be greater than unity one can consider the
resulting convex combination (offspring) as a ‘mutation’.
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parents in such an algorithm. However, as we will illustrate shortly, by implementing
the algorithm above, it is found that retention of the best old genetic strings is critical.
From figure 3 one sees that, if the objective functions are highly non-convex, there
exists a strong possibility that the inferior offspring will replace superior parents.
Therefore, retaining the top parents is not only less computationally expensive, since
these designs do not have to be re-evaluated, it is theoretically superior. With parent
retention, the minimization of the cost function is guaranteed to be monotonic with
increasing generations.

(a) A deterministic example

As an example, consider the widely used Hashin & Shtrikman (1962, 1963) bounds
for isotropic materials with isotropic effective responses; for the bulk moduli,

κ∗,− def= κ1 + v2

(
1

κ2 − κ1
+

3(1 − v2)
3κ1 + 4µ1

)−1

� κ∗ � κ2 + (1 − v2)
(

1
κ1 − κ2

+
3v2

3κ2 + 4µ2

)−1
def= κ∗,+, (5.1)

and for the shear moduli

µ∗,− def= µ1 + v2

(
1

µ2 − µ1
+

6(1 − v2)(κ1 + 2µ1)
5µ1(3κ1 + 4µ1)

)−1

� µ∗ � µ2 + (1 − v2)
(

1
µ1 − µ2

+
6v2(κ2 + 2µ2)
5µ2(3κ2 + 4µ2)

)−1
def= µ∗,+, (5.2)

where κ2 and κ1 are the bulk moduli and µ2 and µ1 are the shear moduli of the
respective phases ((κ2 � κ1) and (µ2 � µ1)), and where v2 is the second phase vol-
ume fraction. Such bounds are the tightest known on isotropic effective responses,
with isotropic two-phase microstructures, where only the volume fractions and phase
contrasts of the constituents are known. As we have mentioned earlier, during effec-
tive material design development, when selecting particulate micro-additives for a
base matrix, information about the changes in the otherwise (relatively) smooth
internal fields, corresponding to the matrix material alone, is valuable to character-
ize a new tailored material’s performance. For the purposes of this example, one way
to analytically characterize the smoothness of the microscopic field behaviour is via
concentration tensors, which provide a measure of the deviation away from the mean
fields throughout the material. Consider the identities

〈ε〉Ω =
1

|Ω|

(∫
Ω1

ε dΩ +
∫

Ω2

ε dΩ

)
= v1〈ε〉Ω1 + v2〈ε〉Ω2

and

〈σ〉Ω =
1

|Ω|

(∫
Ω1

σ dΩ +
∫

Ω2

σ dΩ

)
= v1〈σ〉Ω1 + v2〈σ〉Ω2 .

By direct manipulation we obtain

〈σ〉Ω = v1〈σ〉Ω1 + v2〈σ〉Ω2 = v1E1 : 〈ε〉Ω1 + v2E2 : 〈ε〉Ω2

= E1 : (〈ε〉Ω − v2〈ε〉Ω2) + v2E2 : 〈ε〉Ω2

= ((E1 + v2(E2 − E1)) : C) : 〈ε〉Ω, (5.3)
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where (
1
v2

(E2 − E1)−1 : (E∗ − E1)
)

︸ ︷︷ ︸
def= C

: 〈ε〉Ω = 〈ε〉Ω2 . (5.4)

Thereafter, we may write, for the variation in the stress

C : E
∗−1 : 〈σ〉Ω = E

−1
2 : 〈σ〉Ω2 ,

which reduces to

E2 : C : E
∗−1 : 〈σ〉Ω

def= C̄ : 〈σ〉Ω = 〈σ〉Ω2 . (5.5)

C̄ is known as the stress concentration tensor. Therefore, once either C̄ or E
∗ is

known, the other can be determined. In the case of isotropy we may write

C̄κ
def=

1
v2

κ2

κ∗
κ∗ − κ1

κ2 − κ1
and C̄µ

def=
1
v2

µ2

µ∗
µ∗ − µ1

µ2 − µ1
, (5.6)

where C̄κ〈1
3 trσ〉Ω = 1

3〈trσ〉Ω2 and C̄µ〈σ′〉Ω = 〈σ′〉Ω2 . Clearly, the microstress fields
are minimally distorted when C̄κ = C̄µ = 1. For the matrix, since

〈σ〉Ω1 =
〈σ〉Ω − v2〈σ〉Ω2

v1
,

therefore

〈σ〉Ω1 =
〈σ〉Ω − v2C̄ : 〈σ〉Ω

v1
=

(1 − v2C̄) : 〈σ〉Ω

v1
= C : 〈σ〉Ω, (5.7)

and therefore, in the case of isotropy,

Cκ
def=

1
v1

(1 − v2C̄κ) and Cµ
def=

1
v1

(1 − v2C̄µ). (5.8)

Therefore, for the deviation in the particulate stress fields away from the mean∣∣∣∣〈tr σ〉Ω2 − tr σ〉Ω

〈tr σ〉Ω2

∣∣∣∣ =
∣∣∣∣ C̄κ − 1

C̄κ

∣∣∣∣ (5.9)

and √
(〈σ′〉Ω2 − 〈σ′〉Ω) : (〈σ′〉Ω2 − 〈σ′〉Ω)

〈σ′〉Ω2 : 〈σ′〉Ω2

=
∣∣∣∣ C̄µ − 1

C̄µ

∣∣∣∣, (5.10)

and for the matrix material∣∣∣∣〈tr σ〉Ω1 − 〈tr σ〉Ω

〈tr σ〉Ω1

∣∣∣∣ =
∣∣∣∣Cκ − 1

Cκ

∣∣∣∣ (5.11)

and √
(〈σ′〉Ω1 − 〈σ′〉Ω) : (〈σ′〉Ω1 − 〈σ′〉Ω)

〈σ′〉Ω1 : 〈σ′〉Ω1

=
∣∣∣∣Cµ − 1

Cµ

∣∣∣∣. (5.12)
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In order to incorporate the deviation in a cost function we introduce a tolerance,
where, ideally, ∣∣∣∣ C̄κ − 1

C̄κ

∣∣∣∣ � tolκ and
∣∣∣∣ C̄µ − 1

C̄µ

∣∣∣∣ � tolµ (5.13)

and ∣∣∣∣Cκ − 1

Cκ

∣∣∣∣ � tolκ and
∣∣∣∣Cµ − 1

Cµ

∣∣∣∣ � tolµ . (5.14)

If the normalized deviation exceeds the corresponding tol, then the level of
exceedance is incorporated as a multilateral constraint to the macroscopic objectives.
As an example, our immediate goal is to design computationally the macroscale
effective bulk and shear moduli κ∗ and µ∗ by using convex combinations of
the Hashin–Shtrikman bounds as approximations for the effective moduli κ∗ ≈
θκ∗+ + (1 − θ)κ∗− and µ∗ ≈ θµ∗+ + (1 − θ)µ∗−, where 0 � θ � 1. The micro-macro-
objective function is

Π = w1

∣∣∣∣ κ∗

κ∗,D − 1
∣∣∣∣p + w2

∣∣∣∣ µ∗

µ∗,D − 1
∣∣∣∣p + ŵ3

(∣∣∣∣((C̄κ − 1)/C̄κ)
tolκ

∣∣∣∣ − 1
)q

+ ŵ4

(∣∣∣∣((C̄µ − 1)/C̄µ)
tolµ

∣∣∣∣ − 1
)q

+ ŵ5

(∣∣∣∣((Cκ − 1)/Cκ)
tolκ

∣∣∣∣ − 1
)q

+ ŵ6

(∣∣∣∣((Cµ − 1)/Cµ)
tolµ

∣∣∣∣ − 1
)q

, (5.15)

where

(i) if |(C̄κ − 1)/C̄κ| � tolκ, then ŵ3 = 0,

(ii) if |(C̄κ − 1)/C̄κ| > tolκ, then ŵ3 = w3,

(iii) if |(C̄µ − 1)/C̄µ| � tolµ, then ŵ4 = 0,

(iv) if |(C̄µ − 1)/C̄µ| > tolµ, then ŵ4 = w4,

(v) if |(Cκ − 1)/Cκ| � tolκ, then ŵ5 = 0,

(vi) if |(Cκ − 1)/Cκ| > tolκ, then ŵ5 = w5,

(vii) if |(Cµ − 1)/Cµ| � tolµ, then ŵ6 = 0,

(viii) if |(Cµ)/Cµ − 1| > tolµ, then ŵ6 = w6.

Here the design variables are Λ = {κ2, µ2v2}, and their constrained ranges are

κ
(−)
2 � κ2 � κ

(+)
2 , µ

(−)
2 � µ2 � µ

(+)
2 , v

(−)
2 � v2 � v

(+)
2 .

There are two characteristics of such a formulation which make the application of
standard gradient-type minimization schemes, such as Newton’s method, inapplica-
ble. Firstly, the incorporation of limits on the microfield behaviour, as well as design
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search space restrictions, renders the objective function not continuously differen-
tiable in design space, and secondly, the objective function is non-convex, i.e. the
system Hessian is not positive definite (invertible) throughout design space.

We consider a base matrix material (aluminium) of fixed material values,

κ1 = 77.9 GPa and µ1 = 25.9 GPa.

The desired values are

κ∗,D = 96 GPa, µ∗,D = 42 GPa, tolκ = 0.5, tolµ = 0.5.

The (constrained) design variable’s ranges are

0.1κ1 = κ
(−)
2 � κ2 � κ

(+)
2 = 10κ1,

0.1µ1 = µ
(−)
2 � µ2 � µ

(+)
2 = 10µ1,

0 = v
(−)
2 � v2 � v

(+)
2 = 2

3 .

The weights were set to w1 = w2 = ŵ3 = ŵ4 = ŵ5 = ŵ6 = 1. We used θ = 0.5 for
the Hashin–Shtrikman bound combination. The number of genetic strings was set to
1000, for 10 generations, keeping the offspring of the top 100 parents after each gen-
eration. Two cases were considered: (i) additionally keeping the top K = 100 parents
after each generation, thus with 800 new genetic strings infused and (ii) not keeping
the top K = 100 parents after each generation, thus with 900 new genetic strings
infused. Figure 4 depicts the results for several generations. After 10 generations, a
dominant genetic has appeared for each approach ((i) and (ii)). The minimization
of the cost function is guaranteed to be monotone if the top parents are retained,
i.e. Π(Λopt,I) � Π(Λopt,I+1), where Λopt,I+1 and Λopt,I are the best genetic strings
from generations I + 1 and I, respectively. There is no such guarantee if the top par-
ents are not retained. While the non-retention of parents allows more newer genetic
strings to be evaluated in the next generation, numerical studies conducted thus far
imply, for sufficiently large populations, that the benefits of parent retention out-
weigh this advantage, as well as any disadvantages of ‘inbreeding’, i.e. a stagnant
population. The case of inbreeding is circumvented in the current algorithm due to
the fact that, with each new generation, new material designs, selected at random
within the design space, are introduced into the population. As the results illustrate
(table 1), not retaining the parents is suboptimal due to the possibility that inferior
offspring will replace superior parents. Furthermore, parent retention is computa-
tionally less expensive, since these designs do not have to be re-evaluated, although
this was not a concern for the types of simulations in this semi-analytical example.

6. Direct computational approaches

In order to perform meaningful computational optimization of the material micro-
structure, one needs reliable effective responses. It is clear that for the relation
between averages to be useful, i.e. statistically representative, the sample must be
so large that, for further enlargements, E

∗ changes minimally. For illustration pur-
poses, we used an aluminium (matrix)/boron (particle) combination. Typically, the
boron (κ2 = 230 GPa, µ2 = 172 GPa) is used as a stiffener for the aluminium matrix
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Table 1. Top designs after 10 generations

(KPC, keeping parents with constraints; NKPC, not keeping parents with constraints; KPNC,
keeping parents with no constraints; NKPNC, not keeping parents with no constraints.)

search
κ2

κ1

µ2

µ1
v2 Π

KPC 1.972 4.755 0.317 9 0.000 000 009 8
NKPC 2.172 5.730 0.277 1 0.000 000 487 4
KPNC 2.377 6.753 0.246 6 0.000 000 005 7
NKPNC 2.507 7.408 0.231 1 0.000 005 661 0
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Figure 4. Generational values of (a) the best design’s objective function and (b) the average
of the best 10 designs’ objective functions. KPC, keeping parents with constraints; NKPC, not
keeping parents with constraints; KPNC, keeping parents with no constraints; NKPNC, not
keeping parents with no constraints.

(κ1 = 77.9 GPa, µ1 = 25.9 GPa). We used a moderate particulate volume frac-
tion of ca. 22%. The following particle-per-sample sequence (figure 5) was used to
study the dependence of the effective responses on the sample size: 2 (5184 DOF),
4 (10 125 DOF), 8 (20 577 DOF), 16 (41 720 DOF), 32 (81 000 DOF) and 64 (151 959
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Figure 5. (a) The values of the effective shear responses for samples containing increasingly
larger numbers of particles. One hundred tests were performed per particle/sample combination
and the results were averaged. (b) 100 samples: shear responses, µ∗, of a block with 20 randomly
distributed boron spheres embedded in an aluminium matrix. Each point represents the results
of one test.
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DOF) particles, where ‘DOF’ denotes the degrees of freedom. For more details on
the finite-element implementation, we refer the reader to the appendix. A meaningful
parameter to track was the ratio of the diameter of the individual particles (d) to
the length of the sample (L). Throughout the tests, we considered a single combined
boundary loading satisfying Hill’s condition, u|∂Ω = E · x, Eij = 0.001, i, j = 1, 2, 3.
We tracked the effective bulk and shear moduli, κ∗ and µ∗, respectively. At each
sample size, size effects, i.e. scatter in the effective responses, occur. To eliminate
the effects of scatter, the tests were performed 100 times for each sample size (each
time with a different random-particulate distribution) and the responses averaged.†
Since the effective bulk and shear responses behave in a quantitatively similar man-
ner, for brevity, we show only the effective shear responses. Figure 5 depicts the
dependency of the responses with growth in particle number per sample, keeping the
volume fraction constant. For example, the time to preprocess, solve and postprocess
a 20-particle sample finite-element test is roughly 10 s on a single workstation, using
a research code written by the author.‡ For three successive enlargements of the
number of particles, i.e. 16-, 32- and 64-particle samples, the responses differed from
one another, on average, by less than 1%. One approach is to select reasonably large
samples (for a given Λ) with a fixed number of particles, for example 20. However,
the samples will exhibit mutual fluctuations in their respective effective responses
due to the various random-particulate realizations. A stabilization procedure is then
applied, by which a series of the samples are tested until the progressive ensemble
average converges. For example, consider a certain microstructural design specifica-
tion (Λ), and a process where a sample of finite size, with a random microstructure,
is tested, and the effective response recorded. Consider a repetition of the test for
another equally sized sample, with the same microstructural design vector but with
another random microstructural realization. The tests are repeated, for more and
more samples, until the sequential change in the ensemble average falls below a
given tolerance for further tests (i = 1, 2, . . . , S):∣∣∣∣ 1

S + 1

S+1∑
i=1

Π(i) − 1
S

S∑
i=1

Π(i)
∣∣∣∣ � tol

∣∣∣∣ 1
S + 1

S+1∑
i=1

Π(i)
∣∣∣∣. (6.1)

Therefore, in step 2 of the algorithm in § 5, one must only replace ‘compute’ with
‘ensemble-compute’. This procedure is quite effective in eliminating detrimental size-
effect noise. For further theoretical analysis of size-effect perturbations see Huet
(1982, 1984, 1990), Hazanov & Huet (1994), Hazanov & Amieur (1995) and Huet
(1997, 1999). In particular, for the consequences of size effects on optima see Zohdi
(2002c).

7. Numerical examples and closing remarks

A fixed mesh of ca. 9×9×9 trilinear hexahedra or 2344 numerical degrees of freedom
per particle, for a total 46 875 degrees of freedom, was used. This mesh density deliv-
ered mesh independent results over the course of the numerical experiments. In other

† This procedure can be done trivially in parallel.

‡ Of course, these tests could have been performed trivially in parallel, and thus the entire 100-sample
testing run would have taken 10 s.
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Figure 6. (a) Top design and (b) top six average designs after 10 generations. KPN, keep par-
ents/non-isotropic; KPI, keep parents/isotropic; NKPN, not keep parents/non-isotropic; NKPI,
not keep parents/isotropic.

words, the same final designs occurred using finer meshes. To illustrate the search
process, continuing with 20-particle subsamples, the effective response produced by
a sample containing ca. 22% boron spheres in an aluminium matrix (µ1 = 25.9 GPa,
κ1 = 77.9 GPa) was first computed. The effective response was ca.κ∗ = 96 GPa
and µ∗ = 42 GPa. Our objective was to find alternative microstructures which could
deliver the same effective response (κ∗,D = 96 GPa and µ∗,D = 42 GPa), while obey-
ing the stress perturbation constraints, to a specified tolerance.† We considered an
objective function of the following form:

Π = wκ

∣∣∣∣κ∗ − κ∗,D

κ∗,D

∣∣∣∣p︸ ︷︷ ︸
macroscopic bulk

+ wµ

∣∣∣∣µ∗ − µ∗,D

µ∗,D

∣∣∣∣p︸ ︷︷ ︸
macroscopic shear

+ wσ

(√
(〈δσ : δσ〉Ω)/〈σ : σ〉Ω

tolσ
− 1

)q

︸ ︷︷ ︸
microfield smoothness

.

(7.1)

† Throughout the tests, we considered a single combined boundary loading satisfying Hill’s condition,
u|∂Ω = E · x, Eij = 0.001, i, j = 1, 2, 3.
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(a) (b)

xy
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Figure 7. (a) The original spherical microstructure: κ2/κ1 = 2.95, µ2/µ1 = 6.90, ζ = 0.75
(volume fraction: v2 ≈ 0.22), A = 1, s = 2. (b) A general alternative microstructure (to spheres)
produced by minimizing the perturbation in the stresses within the material while maintaining
the same effective response.

Table 2. Top designs and average of the top six, after 10 generations

(KP, keeping parents and with a non-isotropic polynomial order; KPIP, not keeping parents and
with a non-isotropic polynomial order; NKP, keeping parents and with an isotropic polynomial
order; NKPIP, not keeping parents and with an isotropic polynomial order.)

search type
κ2

κ1

µ2

µ1
ζ v2 A s1 s2 s3 Π

KP 5.540 6.349 0.358 0.183 1.373 5.155 7.055 7.901 0.000 32
KPIP 4.728 4.759 0.341 0.213 1.178 6.210 6.210 6.210 0.001 30
NKP 3.720 7.670 0.385 0.206 1.379 3.528 5.653 4.606 0.000 73
NKPIP 3.730 5.144 0.344 0.205 1.208 5.950 5.950 5.950 0.002 63

With this in mind, the algorithm was started away from the original spherical alu-
minium/boron design location, but still prescribing the same objective:

κ∗,D = 96 GPa and µ∗,D = 42 GPa.

The matrix material was fixed to be aluminium, however, all other design parame-
ters, with the exception of the particle orientations (since isotropic objectives were
sought), were allowed to vary. We used the weights wκ = wµ = wσ = 1. The expo-
nents p = q = 1 were used in equation (7.1). The constraints on the design space
were

0.1κ1 = κ
(−)
2 � κi

2 � κ
(+)
2 = 10κ1,

0.1µ1 = µ
(−)
2 � µi

2 � µ
(+)
2 = 10µ1,

0.1 = A(−) � Ai � A(+) = 10,
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1 = s(−) � si � s(+) = 10,

0.2 = ζ(−) � ζi � ζ(+) = 0.4.

The volume fraction was controlled via a particle/sample size ratio (one variable),
defined by a subvolume size V

def= (L × L × L)/N , where N is the number of particles
in the entire sample and where L is the length of the (cubical) sample, L × L × L.
A generalized diameter is defined, r, which is the diameter of the smallest sphere
that can enclose a single particle of possibly non-spherical shape. The ratio between
the generalized diameter and the subvolume is one design parameter defined by
ζ

def= r/V 1/3. The number of genetic strings was set to 20, for 10 generations keeping
the offspring of the top six parents. Two cases were considered: keeping the top K = 6
parents and not keeping the top K = 6 parents and also keeping the polynomial
order the same for all three axes and allowing all axes to vary. It appears that
even for isotropic overall responses, allowing the polynomial order of the axes to
vary appears to minimize the objective even further. Table 2 and figure 6 depict
the results. As mentioned earlier, retaining the parents generates a better set of
designs at the end of the multiple generation cycle. The total number of global
evaluations is T + (G − 1) × (T − Q), where G is the number of generations, T is
the total number of genetic strings in the population and Q is the number of parents
kept after each generation. The minimization of the cost function is guaranteed
to be monotonic, if the top parents are retained. For the best design, generated
when retaining the parents and with non-isotropic topological exponents, 146 genetic
strings were tested after 10 generations. A total of 1664 samples (each containing
20 particles) were tested to stabilize the ensemble averaging process, for an average of
11.8 with samples per string. The cuboid type microstructures that occur are similar
to microstructures generated by Vigdergauz (1994, 2001a, b) and by Torquato &
Hyun (2001), although they are for somewhat different objective functions in two
dimensions for periodic media. Clearly, the rounding of the corners of the particles
of the cuboid microstructure (figure 7) is a product of the stress-field constraints.

8. Concluding comments

The focus of the work presented here was the development of a statistical genetic
algorithm which can handle difficulties due to objective function non-convexity, lack
of regularity and size effects encountered in the design of random-particulate media.
The computational approach was constructed so that it can be easily implemented
by a wide audience of researchers in the field. Theoretical properties of the over-
all approach were investigated and semi-analytical and large-scale numerical exam-
ples, involving finite-element-type discretizations, were given to illustrate its practical
application. Clearly, the approach presented is only one possible strategy to contend
with the difficulties that one encounters in the design of random-particulate media.
However, it is relatively straightforward to implement and does not require a signif-
icant coding effort.

Appendix A.

Throughout the simulations, we shall employ the finite-element method, along
with a technique of Gauss-point oversampling to resolve the topological features of
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Figure 8. A material discontinuity in a reference finite element.
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Figure 9. A random microstructure consisting of 20 non-intersecting particles. (a) Diamond-type
microstructure (s1 = s2 = s3 = 1). (b) Oblate disc-type microstructure (aspect ratio of 1 : 3).
Both microstructures contain particles which occupy ca. 7% of the volume.

the microstructure accurately. We first consider a one-dimensional reference finite-
element domain, and associated integrands, F (ζ) with a jump discontinuity at δ
(figure 8), which admit a decomposition of the function into continuous and dis-
continuous parts, F (ζ) = C(ζ) + ]]F (δ)[[ H(ζ − δ), where ζ is the local coordinate,
and ]]( · )[[ def= ( · )|+ − ( · )|− is the jump operator. We assume that the elements are
small compared with the length-scales of the particulate matter and as a conse-
quence that there is at most one discontinuity within the element. However, this
assumption makes no difference at the implementation level. Integrating over a ref-
erence element, we have

∫ 1
−1 F (ζ) dζ =

∫ 1
−1(C(ζ) + ]]F (δ)[[ H(ζ − δ)) dζ. We perform

a straightforward Gauss–Legendre quadrature, with G quadrature points, where m
points lie before the discontinuity at δ. We assume that the continuous function,
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possibly a polynomial, can be integrated exactly, or nearly exactly, with standard
quadrature ∫ 1

−1
C(ζ) dζ ≈

G∑
i=1

C(ζi)wi,

where wi are the Gauss weights and where ζi are the Gauss-point locations. We note
the property

∑G
i=1 wi = 2. The remainder is the discontinuous part,

]]F (δ)[[
∫ 1

−1
H(ζ − δ) dζ = ]]F (δ)[[ (1 − δ).

We may write

]]F (δ)[[
G∑

i=1

H(ζi − δ)wi = ]]F (δ)[[
m∑

i=1

0 × wi + ]]F (δ)[[
G∑

i=m+1

1 × wi.

As a consequence, the maximum amount of variation in the computed integration is

variation = |]]F (δ)[[|
( G∑

i=m

wi −
G∑

i=m+1

wi

)
� |]]F (δ)[[| max

i
wi. (A 1)

In order to bound the dependence of the largest quadrature weight, wi in the interval
(−1, 1), with the Gauss–Legendre rule, we fit the least-squares curves (Gauss rules
of 1 � G � 10) with maxi�G wi ≈ 1.93G−0.795 with R2 = 0.99, where R2 = 1.0
indicates a perfect regression value of the curve fit. Simple three-dimensional esti-
mates can be made by applying this procedure in all three directions on a reference
element.

For example, consider a three-dimensional step function discontinuity over a ref-
erence finite element ((−1, 1) × (−1, 1) × (−1, 1)). Denoting the reference-element
volumetric normalization of the bound by β

def= 1
8(1.93G−0.795)3, since 8 = 2×2×2 is

the volume of the reference element, one has for (i) a 2×2×2 Gauss rule β = 0.1720,
(ii) a 3 × 3 × 3 Gauss rule β = 0.0654, (iii) a 4 × 4 × 4 Gauss rule β = 0.0329 and
(iv) a 5 × 5 × 5 Gauss rule β = 0.0193. Consequently, the amount of variation in the
integral is at most ca. 2%. Therefore, for efficient implementation, a 2/5 rule should
be used, whereby a 2 × 2 × 2 Gauss rule is used if there is no material discontinuity
in the element, and a 5 × 5 × 5 rule is used if there is a material discontinuity. We
emphasize that this procedure is used simply to integrate elemental quantities with
discontinuities accurately. For a variety of numerical tests in Zohdi (2001), the typical
mesh density to deliver mesh insensitive results, for the quantities of interest in the
upcoming simulations, was 9×9×9 trilinear finite-element hexahedra (ca. 2200–3000
DOF) per particle. A disc-type and a diamond-type microstructure, as seen by the
meshing algorithm with a 24×24×24 trilinear hexahedra mesh density for a total of
46 875 DOF (ca. 9×9×9 hexahedra or 2344 DOF per element), are shown in figure 9.
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