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Abstract
Smoothed particle hydrodynamics (SPH) has become a popular numerical framework of choice for simulating free-surface
flows, mainly for Newtonian fluids. The topic regarding the simulation of non-Newtonian free-surface flows, however, remains
relatively untouched due to difficulties regarding the computation of viscous forces. In previous approaches, the viscous
forces acting on each SPH particle were computed explicitly. Non-Newtonian fluids such as Herschel–Bulkley fluids, the
effective viscosity between yielded and unyielded regions can differ by several orders of magnitudes; imposing severe time
step restrictions for the simulation for explicit methods. Numerically, this can be seen as a stiff problem. We propose a semi-
implicit time-stepping approach where the viscous forces are computed implicitly, within the context of SPH.We demonstrate
the convergence of the method via a simple 2D test case.
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1 Introduction

Originally developed for astrophysical simulations, SPH has
become a popular numerical method of choice for simulating
free-surface Newtonian flow problems [4,5,9]. Naturally, the
topic regarding the simulation of non-Newtonian flows with
this method has been in question for some time, although
successful attempts were limited due to the explicit nature
of SPH. Such efforts can be found in previous work such
as in Hosseini et al. [7]. Although satisfactory results were
obtained for some cases, the effective viscosity values used
within the simulation had little variance. For example, for a
Herschel–Bulkley type fluid, unyielded regions exhibit vis-
cosity values that aremultiplemagnitudes larger compared to
yielded regions. In our experience, it becomes very difficult
to resolve a SPH system with such viscosity variance exclu-
sively with explicit methods, especially with SPH. For this
article, we will employ Chorin’s projection method to split
the viscous forces and the pressure forces. We then introduce
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an iterative process to solve for the viscous forces implicitly
for the next time step. A brief convergence study for a simple
2D flow field of a Herschel–Bulkley fluid was given at the
end.

2 Problem formulation: smoothed particle
hydrodynamics

We first discretize the Navier–Stokes equation via SPH for-
malism. For each SPH particle, we have

Dui
Dt

= −
〈
1

ρ
∇ p

〉
i
+
〈
μ

ρ
∇2u

〉
i
+ bi (1)

Dρi

Dt
= 〈ρ∇ · u〉i (2)

pi = fEOS(ρi ) (3)

The physical quantity included within the angles brackets
< · > represents the physical value discretized via SPH, and
fEOS represents the equation of state. Tait’s equation of state
[13] was used for this paper. Note that taking such approach
results in a weakly-compressible SPHmodel (WCSPH). The
pressure gradient discretization (1) is usually chosen to be
[13]:
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−
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+ p j

ρ2
j

)
∇iWi jm j (4)

The index i represents the i th SPH particle, while j ∈ Ni

represents the set of neighbors of the i th particle. Wi j is the
kernel function centered around particle i , ∇iWi j represents
the gradient of the kernel, pi is the pressure of particle i , p j

is the pressure of particle j , ρi is the density of particle i , ρ j

is the density of particle j , mi and m j represent the mass of
particle i and j , respectively.

We may split the pressure and the viscous contributions
via a projection method [3]:

u∗
i = uni +

(
�t

ρi

)
(a p)i (5)

un+1
i = u∗

i +
(

�t

ρ∗
i

)
(av) j (6)

where uni and un+1
i , respectively, represent the velocity of

particle i at the nth and n + 1th time step, and n∗
i represents

the “intermediate velocity”. The acceleration of each particle
due to pressure forces can be computed using (4). We now
look into the acceleration contribution for the viscous step
(aa,v). Influenced by the viscous operator utilized in Shao
and Lo [15], we explicitly expand out the viscous operator.
For an explicit version, we will have:

un+1
i =

uni +(�t)

⎛
⎝∑

j∈Ni

4m j (μ̄eff )i j (x∗
i − x∗

j ) · ∇Wi j

(ρ∗
i +ρ∗

j )(x
∗
i − x∗

j ) · (x∗
i − x∗

j )
(u∗

i − u∗
j )

⎞
⎠

(7)

For the average effective viscosity μ̄eff,ab, we pick

(μ̄eff)i j = (μ̄eff)i + (μ̄eff) j

2
(8)

Note that there exists different methods for “mixing” the
viscosities between particles [4,8].

Later on, we will re-formulate the above via an implicit
time-stepping scheme.

The effective viscosity of each particle is computed
according to the non-Newtonian fluid model before the vis-
cous step. For a regularized Herschel–Bulkley fluid model
(Tanner/milthrope 1983):

μeff =
{
kγ̇on+1 + τoγ̇o

−1 γ̇ < γ̇o
kγ̇ n−1 + τoγ̇

−1 γ̇ ≥ γ̇o
(9)

With the viscous shear (τ i ) computed using the above
effective viscosity being

τ = 2(μeff)i (γ̇ )Di , Di = 1

2

(
∇u∗

i + ∇u∗
i
T
)

(10)

For continuity, the method found in Antuono et al. [1]
was employed (widely known within the SPH community as
δ-SPH) :

〈ρ∇ · u〉i = −ρi
∑
j∈Ni

(u j − ui ) · ∇iWi j Vj + δhc0Di (11)

where Di is the “diffusion” term, defined as

Di = 2
∑
j∈Ni

ψi j
r j i · ∇Wi j

r2i j
V j , (12)

where δ is a tunable constant (usually chosen to be 0.1), h is
the SPH smoothing length, c0 is the speed of sound, and ψi j

is defined as :

ψi j = (ρ j − ρi ) − 1

2

(〈∇1ρi 〉 + 〈∇1ρ j
〉) · r j i , (13)

where 〈∇1 ( · )〉 represents the renormalized gradient opera-
tor. 〈∇1ρi 〉 can then be written as :

〈∇1ρi 〉 = Bi

∑
j∈N (i)

(ρ j − ρi )∇iWi j Vj (14)

Here, Bi is the first derivative renormalization matrix sug-
gested by Oger et al. [14], which is defined as :

Bi =
⎡
⎣−

∑
j∈N (i)

r i j ⊗ ∇Wi j Vj

⎤
⎦

−1

(15)

Physically, this termadds “artificial diffusivity” to the con-
tinuity equation. Although exact conservation of mass no
longer holds, the added diffusivity onto the density greatly
increases stability throughout the system. As a result, δ-
SPH was proven to be an accurate, versatile approach for
many SPH applications as an alternative to a pressure Pois-
son Equation (PPE) solver for estimating the pressure field
[1,11].

3 Viscous forces

3.1 Semi-implicit time stepping

Non-Newtonian flows usually consist of yielded and non-
yielded regions within the fluid. Many practical fluid models
usually generate effective viscosities that mare magnitudes

123



Computational Particle Mechanics

lower for yielded regions, allowing them to “flow”.Obtaining
stability and convergence for such systems has been a chal-
lenge for SPH due to this property of non-Newtonian fluid
models. In order to address this issue (1), we propose an
implicit time-stepping scheme for the viscous step. A fixed-
point iteration scheme is used to solve for the whole particle
system, similar to [16,17].

Consider a system where the acceleration of each particle
only depends on x and v. Using an implicit trapezoidal rule,
for the displacement field and the acceleration field we have:

[
r t+1

ut+1

]
=
[
r∗
u∗
]

+ �t

2
·
([

ut+1

at+1
v

]
+
[
u∗
a∗

v

])
(16)

where

[
r∗
u∗
]

represents the vector of displacements and

velocities of the whole particle system at time t. Plugging
in
[
ut+1

] = [
u∗]+ �t

2
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at+1
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v

])
, we have for
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]
:

[
r t+1

]
= [

r∗]+ �t

2

·
([

u∗]+ �t

2
·
([

at+1
v

]
+ [

a∗
v

])+ [
u∗]) (17)

= [
r∗]+ �t · [u∗]+ (�t)2

4

([
at+1

v
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Thus, we have for
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]
:

[
r t+1

ut+1
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v
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Notice that the acceleration vector at+1
v is a nonlinear

function of the velocity and the position vectors at time t+1;

thus
[
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v

] = ξ
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r t+1

ut+1

])
, where
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v )i

=
⎛
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(20)

Writing everything out again,
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]
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Thus, we have a system of nonlinear equations with the

unknown vector

[
r t+1

ut+1

]
. We now have the form suitable for

a fixed-point iteration solution process :

[
r t+1

ut+1

]k+1

= Ψ

([
r t+1

ut+1

]k)
(22)

where k is the iteration counter. We simply use

[
r t+1

ut+1

]0
=[

r∗
u∗
]
as the initial “guess”.

3.2 Boundary conditions

A ghost-particle approach was used for our no-slip bound-
ary implementation. Such approach is fairly straightforward,
although for Newtonian fluids one must be cautious when
assigning velocities to the ghost particles. In previous work
regarding Newtonian fluids such as [2,12], the ghost parti-
cles were assigned mirrored velocities in order to improve

Mirrored Velocity 
(Newtonian Fluids) (Non-Newtonian Fluids)Boundary (Ghost) Particles

Fluid Particles

Fig. 1 No-slip boundary conditions for Newtonian fluids and non-
Newtonian fluids

HPeriodic

x

y 

No-Slip

No-Slip

Periodic

Fig. 2 Physical parameters: ∂ p
∂x = 10 [Pa/m], ρ = 1 [kg/m3], H =

0.5 [m], u(y = 0) = 0, u(y = H) = 0, k = 0.5 [Pa s], τo =
0.5 [Pa], n = 0.5, γo = 0.001
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Algorithm 1 Fixed-Point Iteration
function FixedPointIteration[

r t+1

ut+1

]0
=
[
r t

ut

]
	 Initialize Guess

while Norm(
[
r t+1

ut+1

]k+1

−
[
r t+1

ut+1

]k
) > T OL do

for Particlea in Solid Particles do 	 Compute Ψ k+1

ComputeAccelerations(Particlea)
end for
for Particlea in Solid Particles do 	 Update Guess[

r t+1

ut+1

]k+1

= Ψ

([
r t+1

ut+1

]k)

end for
end while

end function

convergence near the boundaries when implementing no-
slip conditions. Unfortunately, for non-Newtonian fluids, this
approach would be inappropriate since the rate of defor-
mation tensor that is required to compute the shear tensor

(τ = 2(μeff)i γ̇ Di , Di = 1
2 (∇u∗

i + ∇u∗
i
T)) would incor-

rectly indicate that the fluid is “yielding” near the boundary.
Thus, the velocities are required to be zero for the ghost par-
ticles (Fig. 1).

4 Numerical example: Herschel–Bulkley 2D
poiseuille flow

A simple steady-state numerical example is presented to
show convergence properties of our method, as shown in
Fig. 2. The left/right boundaries were treated with a peri-
odic boundary condition, where the leaving particles were
feeded back into the domain. The quintic Wendland kernel
was exclusively used as our kernel function, due to its many
known benefits [10]. The kernel support radius was chosen
to be 3 times the particle diameter (3 × �x).

To compare our results, the analytical solution of the above
problem [6] was used:

Fig. 3 Steady-state velocity
profile compared to analytical
solution

Fig. 4 The method showed a
convergence order of 1.6 in
space
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Fig. 5 Red region is the “unyielded” fluid where the effective viscosity is significantly larger. At startup (left), the region is significantly larger
compared to steady state (right).
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n
⎤
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∣∣ < τ0(
∂ p
∂x

)
(23)

4.1 Numerical results

The results of the numerical solution are shown in Figs. 3,
and 5. 4 simulations with different resolutions (11, 21, 41,
81 particles in the y-direction, respectively).

Figure 3 compares the velocity profile of the SPH solution
to the analytical solution. Figure 4 shows the convergence
rate of our proposed method. The results show that our
semi-implicit approach is capable of resolving large viscosity
contrasts between the two different regions. This shows that
SPH can be a possible method of choice for producing high-
quality results for non-Newtonian fluid flow simulations.

Nevertheless, compared to the simulation with the highest
resolution (Nx = 81), the lower resolution cases seemed to
show rather large errors. Since the shear rate γ̇ = √

2D : D
is dependent on the rate of deformation tensor, which is com-
puted at each time step with the SPH operators, it is difficult
to maintain “sharp” transitions for the rate of deformation
tensor. This transition region can also be observed in Fig. 5).

5 Conclusion

A new semi-implicit time-stepping scheme was proposed to
overcome the large difference in effective viscosities in non-
Newtonian fluids. For such systems, explicit methods are
virtually fruitless. Convergence was obtained by applying
our proposed scheme, with high effective viscosity ratios.
However, relatively fine discretization was required in order
to obtain satisfactory results. This indicates that the bound-
aries between the yielded region and the non-yielded regions
are being excessively smoothed (which SPH operators are
known to do), especially for lower resolution simulations.
For full 3D simulations, this may result in very high com-
putational expense. Additional numerical remedies that may
obviate these issues are currently under investigation by the
authors.
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