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Abstract
Electrically induced tissue damage is a coupled phenomenon in multiphysics. Conducting electricity produces heat and this
increases the temperature. The soft tissue like skin, organs, brain, or muscles is burnt under successive heating. This damage is
modeled by using a damage parameter with a corresponding evolution law above a threshold temperature. Electromagnetism,
thermomechanics, and damage modeling creates a set of coupled and nonlinear field equations, by solving them with the aid
of the finite element method, we compute a realistic example where the tissue absorbs the electric energy, converts to heat,
and gets burnt due to the excessive temperature increase.

Keywords Electromagnetism · Thermodynamics · Damage modeling · Fung’s model · Finite element method

1 Introduction

There are countless accidents of burnt tissue as a consequence
of conducting electric field over the skin or organs. Depend-
ing on the effective current, JJJ fr., conducting through the tissue
because of the electric field,EEE , an amount of heat is produced
that is called Joule’s heat, JJJ fr. · EEE . This electrical power is
the energy per time generated and mostly absorbed by the
tissue because of its inherent exponential response character,
which is commonly modeled by the so-called Fung model.
Whenever this power is high, wemay consider a case that the
whole energy is absorbedby the tissue, in otherwords, noheat
conduction occurs in the system such that the temperature
increase is fast and fatal. This excessive energy absorption is
often the accident, where the useful electric energy is flowing
over the human body instead of the electric circuit as it was
designed. Such a fast temperature increase leads to third or
fourth degree burning of tissue, resulting in a loss of elas-
ticity (stiffening) and humidity such that a dry and charred
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material is left over. We call this state “damaged” material.
For different levels of burnt tissue as well as their fatality, we
refer readers to [13,14,17,31,44].

In this work, we aim at modeling the temperature induced
damage in the soft material as a consequence of high cur-
rent flow through resistive biological tissue. First, we briefly
explain the thermodynamics of such a system by using
Maxwell equations and balance equations by following
[41] as well as [5]. Second, we obtain the weak form for the
computation by following [2]. All computational work has
been established by using open-source packages in Python
[38] developed under the FEniCS project [8,33]. We empha-
size that all field equations are coupled, hence, the strength of
the presented approach lies in themonolithic solutionmethod
of all unknowns. Third, we create an examplewhere the dam-
age can be visualized clearly. We use Fung’s material model
with a phenomenological damage evolution law as in [47]
such that the computational analysis herein is expected to
be qualitatively representative. We will use the following
assumptions in the modeling:

• The material is not polarized.
• Thermal damage is characterized by the stiffening being
tantamount to the loss of compliance.

• Plastic deformation fails to occur such that the material
is assumed to be hyperelastic or damaged.
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• No healing can happen in the short time segment of burn-
ing the tissue such that the damage is monotonically
increasing, its evolution law is zero or positive.

Lightning is a source of very high electric current around
10kA for a short amount of time, approximately 50ms. This
high energy release is an example for burnt tissue because
of Joule’s heat caused elevated temperatures in the body.
According to [21], only in the USA up to 300 deaths are
estimated annually caused by more than 20 million cloud-to-
ground lightning strikes. We demonstrate the robustness of
the underlying algorithm by performing a simplified simula-
tion of damage realized in extremities caused by a lightning.

2 Governing equations

Thermodynamics sets the objective to calculate mass den-
sity, ρ, velocity, v, temperature, T , electric field, EEE , and
magnetic flux (area density), B, as functions in space and
time. All these quantities are determined in a so-called lab-
oratory frame. For solid body mechanics, it is beneficial to
understand the current placement of particles as the parti-
cles occupying the spatial position x in the laboratory frame.
Hence, by tracking particles’ positions, we create a mate-
rial system with a reference frame usually chosen as the
initial frame since we know the spatial positions of contin-
uum body’s particles at the initial time, t = 0. We consider
a continuum body, occupyingB0 initially, with a given mass
density ρ0 in this initial frame. The space coordinates, X ,
denote material particles; we introduce the motion to the cur-
rent position, x = u+ X with the displacement, u, by using
the deformation gradient and its determinant,

Fi j = ∂xi
∂X j

= ∂ui
∂X j

+ δi j = ui, j + δi j , J = det(F), (1)

expressed by Cartesian coordinates; where all Latin indices
run one to three in three-dimensional continuum, B0 ∈ R

3.
We use the conventional continuummechanics notation with
Einstein’s summation convention applied to every repeated
indices and a comma notation indicating that a partial space
derivative is taken. The Kronecker delta, δ, is the identity
matrix and the deformation gradient is used to transform or
map the balance equations of mass, momentum, and energy
from the current to the initial frame. In the case of elec-
tromagnetism, the transformation is challenging, we refer
to [28] and [4]. In this work, we assume small deforma-
tions with respect to the geometric dimensions such that the
transformation from the current to the initial frame is cir-
cumvented. Technically, we use Maxwell equations in the
current frame and the balance equations in the initial frame.
Effected by the assumption of small deformations, we skip

a distinction between them. This assumption is admissible
for the application even in the case we use a material model
being capable of representing large deformations.

After a straightforward derivation as in [3] as well as in [2,
Sect. 2.4 and 3.3], we obtain the balance of internal energy
in the initial frame

ρ0u
• + Qi,i − ρ0r = JJiEi + Si jE

•

i j , (2)

with the specific internal energy u, heat flux Q, 2nd
Piola–Kirchhoff stress S, and Green–Lagrange strain
E = (C − δ)/2 with the right Cauchy–Green deforma-
tion tensor, C = FᵀF. We write on the right-hand side the
production term as usual in the non-equilibrium thermody-
namics. We emphasize that no polarization is assumed such
that JJJ fr. = JJJ in this work. The first production term in Eq. (2)
is the Joule heating causing the temperature increase in the
application. The stress can be decomposed into reversible
and irreversible terms, in this work, we assume that the
irreversible stress—caused by the viscous character of the
material—is not significant. In other words, we assume that
the tissue behaves elastic until the damage. By introducing
the Helmholtz free energy per mass,

f = u − Tη, (3)

with the specific entropy η, we reformulate Eq. (2) and obtain
the balance of entropy,

ρ0f • + ρ0T
•η + ρ0Tη• + Qi,i − ρ0r = JJiEi + Si jE

•

i j ,

ρ0η
• +

(Qi

T

)
,i

− ρ0
r

T
= −Qi

T 2 T,i

+ J

T
JiEi + 1

T

(
Si jE

•

i j − ρ0f • − ρ0T
•η

)
(4)

where the right hand side is the entropy production,�, which
has to satisfy � ≥ 0 according to the 2nd law of thermody-
namics. By assuming that the internal energy is reversible,
we acquire f = f (T ,E)with the following identities leading
to a vanishing final term in the entropy production,

η = − ∂f
∂T

, Si j = ρ0
∂f

∂Ei j
. (5)

Then the usual choice of the heat flux as well as the electric
current,

Qi = −κT,i + ςπTEi , Ji = ςπT,i + ςEi , (6)

gives the only admissible constitutive relations with κ ≥ 0
andς ≥ 0 such that the entropy production is zero or positive,
� ≥ 0. The thermoelectric constant π is often neglected. In
this case, if the thermal conductivity, κ , is constant, the con-
stitutive relation for Q is named after Fourier; analogously,
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if the electric conductivity, ς , is constant, the relation for JJJ is
called Ohm’s law. The choice of the free energy is estab-
lished in a phenomenological manner. Especially for soft
materials, its description is discussed heavily in the literature,
among others we refer to [27] as well as [26]. By following
[2, Sect. 2.4], in the case of no damage, and also neglect-
ing the thermal expansion, the relatively simple energy and
entropy read

u = c(T − Tref.) + 1

2ρ0
Ei jCi jklEkl , η = c ln

( T

Tref.

)
,

(7)

where the specific heat capacity, c, is assumed to be a constant
material parameter. The reference temperature will be set to
the room temperature, Tref. = 300K, and the stiffness tensor,
Ci jkl , is the inverse of the compliance—compliance is amea-
surable material parameter, we refer to [9, Sect. 2.1.4] for a
clear explanation of such measurements. By using Eqs. (3),
(5)2, we obtain the 2nd Piola–Kirchhoff stress from the
energy,

Si j = ρ0
∂f

∂Ei j
= Ci jklEkl . (8)

In order to acquire a formulation for tissue type softmaterials,
we follow [19,20], as throughly discussed in [47], and intro-
duce the following internal energy, called the Fungmaterial
model:

u = c(T − Tref.) + 1

2ρ0
Ei j Hi jklEkl

+ D

ρ0

(
exp

(1
2
Ei j Bi jklEkl

)
− 1

)
, (9)

where Hi jkl , D, and Bi jkl are material parameters. We
acquire the stress,

Si j = ρ0
∂f

∂Ei j
= Hi jklEkl

+DBi jklEkl exp
(1
2
EmnBmnopEop

)
, (10)

which has to match the stress in Eq. (8) as strain converges
to zero. This condition leads to the following assertion:

Hi jkl + DBi jkl = Ci jkl . (11)

Now, we employ a simplification and choose Hi jkl = 0 such
that thematerial parameter for the Fungmodel is determined
by knowing the stiffness tensor and estimating D in the sim-
ulation,

Bi jkl = 1

D
Ci jkl . (12)

Furthermore, by following [29], one possible approach to
implement the damage relies on using a simple model with
a scalar damage variable, α, as follows:

Ci jkl = 1

α
C0
i jkl . (13)

Therefore, in the case of damage, the internal energy reads

u = c(T − Tref.) + D

ρ0

(
exp

( 1

2Dα
Ei jC

0
i jklEkl

)
− 1

)
,

(14)

such that the free energy depends on the damage variable as
well, f = f (T ,E, α). The dependencies on the temperature
and the strain generated Eq. (5), now by adding the depen-
dency on the damage variable, by inserting f = f (T ,E, α)

into Eq. (4), we obtain the following entropy production:

� = −Qi

T 2 T,i + J

T
JiEi

+ 1

T

(
Si jE

•

i j − ρ0

( ∂f
∂T

T • + ∂f
∂Ei j

E•

i j + ∂f
∂α

α•

)
− ρ0T

•η

)
,

� = −Qi

T 2 T,i + J

T
JiEi − ρ0

T

∂f
∂α

α•. (15)

According to the so-called Curie principle, the same type of
tensors depend on each other. We conclude that ∂f /∂α and
α• may be related to each other in such a way that the product
is positive

− ρ0

T

∂f
∂α

α• ≥ 0. (16)

This relation is an assertion of the 2nd law of thermody-
namics and arises naturally, it is often seen as an additional
condition and called the Karush–Kuhn–Tucker relation
originally used in plasticity, see [40]. By taking the deriva-
tive, we observe

Ei jC0
i jklEkl

2Tα2 exp
( 1

2Dα
EmnC

0
mnopEop

)
α• ≥ 0, (17)

such that rate of the damage, α•, has to be positive. This rela-
tion is modeled by a phenomenological evolution equation,
for example a simple approach reads

α• =
⎧
⎨
⎩
k
T − TTr

TTr

, T > TTr

0, T ≤ TTr

(18)

where the threshold temperature TTr controls the start of dam-
age. The damage variable is 1 < α < ∞ and it increases
monotonically with a positive constant, k ≥ 0. Often, a
related parameter ω = 1/α is used as 0 < ω < 1, where
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ω = 1 indicates no damage and ω = 0 asserts failure. Of
course, the identification of a threshold temperature is very
challenging as discussed in [25,35,43]. The proposed simple
model in Eq. (18) uses a linear relation between the tempera-
ture difference and damage rate. There are ample studies for
a more sophisticated damage model as in [25,35] based on
the assumption that tissue burning is a chemical process to
be modeled by using an Arrheniusmodel, we refer to [45].
Measuring thematerial parameters in such amodel is another
difficulty, as discussed in [39]; but there are models provid-
ing realistic results, for example, we can use the following
Arrhenius type of phenomenological evolution equation:

α• = A exp
(

− Ea

RT

)
, A = exp

( Ea − a

b

)
, (19)

with an activation energy, Ea = 5× 105 J/mol, the universal
gas constant, R = 8.314J/(molK), and the fit parameters,
a = 21149.324J/mol and b = 2688.367J/mol obtained
from [46]. However, these fit parameters result in A in the
order of 1077 making this evolution equation unfeasible for
a simulation. Herein we present a general framework for
a computation of thermal damage and as an example uti-
lize Eq. (18) in order to demonstrate the usefulness of the
suggested framework. Even more sophisticated methods are
possible for including healing [16] and porosity [23] or based
on the mechanical stress [11].

In order to calculate the displacement, we use the balance
of (linear) momentum,

ρ0u
••

i − Pji, j − ρ0 fi = Fi , (20)

with the Piola stress, Pji = Fik S jk , given by the stress in
Eq. (10); with the known gravitational (specific) force, f ;
and the electromagnetic force density, FFF . Since the material
is non-polarized, the electromagnetic force density is defined
by the Lorentz force density,

Fi = ρzEi + εi jkJ j Bk, (21)

with the specific (electric) charge, z. We emphasize ρ = ρ0
as a consequence of the assumption of small deformations.
The Levi-Civita symbol, εi jk , is the permutation symbol
in Cartesian coordinates. For JJJ we employ the constitutive
equation (6)2 and the electric charge will be discussed in the
following.

In order to calculate the electromagnetic fields, E, B, we
follow the procedure as in [2, Sect. 3.2]. First, we introduce
Faraday’s law and derive the following Maxwell equa-
tions,

Bi,i = 0 ,
∂Bi
∂t

+ εi jk Ek, j = 0, (22)

with the usual transformation between the electric field in
the laboratory frame, Ei , and the electric field in the material
frame, Ei , as follows:

Ei = Ei − εi jku
•

j Bk . (23)

A solution of Eq. (22) is obtained by the ansatz functions:

Ei = −φ,i − ∂Ai

∂t
, Bi = εi jk Ak, j , (24)

where the electromagnetic potentials φ, A need to be calcu-
lated. This solution is not unique since we fail to determine
six functions of E, B uniquely by using four functions of
φ, A. The missing two values of Ai,i and ∂φ/∂t have to be
set. They can be chosen arbitrarily, which is often called the
gauge freedom. We will use Lorenz’s gauge [34]. Second,
we introduce the balance of electric charge and derive the
following Maxwell equations,

Di,i = ρz , −∂Di

∂t
+ εi jk Hk, j = Ji , (25)

where the charge potential, D, and the current potential, H ,
are given by the Maxwell–Lorentz aether relations:

Di = ε0Ei , Hi = 1

μ0
Bi , (26)

with the universal constants:

ε0 = 8.85 · 10−12 A s/(Vm) ,

μ0 = 12.6 · 10−7 V s/(Am). (27)

The electric current in the laboratory frame, J , is given by,

Ji = Ji + ρzu •

i . (28)

For solving the electric potential, φ, we use the balance of
electric charge,

∂ρz

∂t
+ Ji,i = 0, (29)

augmented byEq. (25)1. In order to solve themagnetic poten-
tial, A, we use theMaxwell equation (25)2, augmented by
the Lorenz gauge:

∂φ

∂t
+ 1

ε0μ0
Ai,i = 0. (30)

For summing up, we aim at solving temperature, T , displace-
ment, u, electric field,EEE , and magnetic flux, B, by satisfying
the governing equations (4)2, (20), (25), (29) with afore-
mentioned constitutive equations with the damage parameter
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defined by a phenomenological evolution equation (18). This
coupled and nonlinear system can be solved numerically. We
will use a variational formulation for generating the weak
form and employ the finite difference method in time as well
as the finite element method in space for solving the system
monolithically.

3 Variational formulation

We set the objective as computing {φ, A, u, T } as continuous
functions in space and time. Although we use the material
frame, by using the small deformation assumption, we cir-
cumvent a discussion about the correct transformation of
Maxwell equations onto the material frame. By using the
aforementioned governing equations, we suggest a simple
approach leading to the weak form as follows:

1. Discretize in time,
2. Multiply by an arbitrary test function,
3. Discretize in space and integrate over the computational

domain,
4. Integrate by parts the necessary terms,
5. Apply jump conditions.

Each of these are explained in detail in previous works, see
[2,5] for electro-magneto-thermo-mechanical applications.
We emphasize that a fully monolithic solution approach is
developed increasing the accuracy of coupling terms [6] as
well as strengthening the robustness of the algorithm. We
undertake the steps and obtain the weak form. By using finite
difference method in the time discretization, we obtain an
approach that is often called Euler backwards method and
it is unconditionally stable (for problems with real numbers).
In the material frame, rate of every quantity equals to the
partial time derivative that is discretized at the current time,
t , as follows:

()• = ∂()

∂t
= () − ()0

�t
, (31)

where the superscript 0 denotes the known value at the last
time step, t −�t . We use the same time step,�t , throughout
the simulation.

For computing {φ, A, u, T } we use the test functions
{δφ, δA, δu, δT } from the sameHilbertianSobolev space,
we refer to [49] for details of the finite element method. Basi-
cally, we use

V =
{
{φ, A, u, T } ∈ [H1(�)]8 : {φ, A, u, T }

∣∣∣
∂�

= given

}
,

(32)

within the computational domain, �, by utilizing the “stan-
dard” continuous Galerkin elements with linear shape
functions for all fields. We stress that this choice is unusual
for the case of electromagnetism. Often, this approach fails
to converge such that special elements are used [36,42] or
different strategies are developed as in [10,12,22,32,37] and
[15, Sect. 17]. By using standard elements instead of mixed
elements, we can assure a monotonous convergence even in
this coupled system and compute realistic applications as
demonstrated in [7,48]. Hence, using standard elements is
beneficial and possible by following the presented approach
herein. Two important factors help this approach to work,
one is the applied Lorenz gauge and another one is imple-
mentation of the jump conditions in electromagnetism.

For the sake of a simplified notation, we skip a distinction
between the analytic functions and their numerical approxi-
mations since they never occur in the same formulation. For
the weak form of electric potential, φ, we use Eq. (28) and
obtain

Fφ =
∫

�

( − (Di − D0
i )δφ,i − �t Jiδφ,i

)
dV

+
∫

�

ni�t�Ji �δφ dA, (33)

in the unit of energy. On the interface, �, between two differ-
ent materials, say + and −, the jump of the electric current,
�J� = J+ − J−, is caused by the difference of the electric
conductivity ofmaterials. On the domain’s boundary, ∂�, we
set the value of the electric potential as a Dirichlet bound-
ary condition. As a specific case, herein, we assume that the
continuum body has no jump terms on the boundary being
tantamount to isolated boundaries as if the body is embedded
in air. Hence, the final term drops and we solve

Fφ =
∫

�

( − (Di − D0
i )δφ,i − �t Jiδφ,i

)
dV . (34)

Analogously, for the weak form of the magnetic potential,
A, we obtain first from Eq. (25) with Eq. (30) the following
governing equation:

ε0
∂2Ai

∂t2
− 1

μ0
Ai, j j = Ji , Ai, j j = ∂2Ai

∂X j∂X j
. (35)

Its weak form is established by multiplying by the test func-
tion, δA, integrating by parts, applying the jump conditions
and neglecting polarization, as follows:

FA =
∫

�

(
ε0

Ai − 2A0
i + A00

i

�t�t
δAi

+ 1

μ0
Ai, jδAi, j − JiδAi

)
dV , (36)
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in the unit of energy. For electromagnetic potentials, we need
to solve a bigger domain than necessary in order to set the far-
away boundaries zero.Herein, the application is not about the
fields around the body and we assume that neglecting them
fails to introduce any significant error. In order to compute
the displacement, we use the balance of linear momentum as
in Eq. (20) and obtain the weak form in the unit of energy,

Fu =
∫

�

(
ρ0

ui − 2u0i + u00i
�t�t

δui + Pjiδui, j

−ρ0 fiδui − Fiδui

)
dV . (37)

The boundaries vanish for the clamped end by usingDirich-
let conditions and also for the other boundaries by assuming
free boundaries. For computing temperature we employ the
balance of entropy in Eqs. (4)2 and obtain the weak form in
the unit of energy,

FT =
∫

�

(
ρ0(η − η0)δT − �t

Qi

T
δT,i

−�tρ0
r

T
δT − �t�δT

)
dV

+
∫

∂�

�t

T
h(T − Tref.)δT dA, (38)

with the entropy production:

� = −Qi

T 2 T,i + J

T
JiEi

+Ei jC0
i jklEkl

2Tα2 exp
( 1

2Dα
EmnC

0
mnopEop

)
α•, (39)

where for boundaries, we readily applied the natural bound-
ary condition, Qi Ni = h(T − Tref.), with an ambient
temperature chosen as the reference (initial) temperature. The
nonlinear weak form is the sum of Eqs. (34), (36)–(38), i.e.,

Form = Fφ + FA + Fu + FT , (40)

with the following constitutive equations:

Di = ε0Ei , Hi = 1

μ0
Bi ,

Si j = Ci jklEkl exp
( 1

2D
Ei jCi jklEkl

)

η = c ln
( T

Tref.

)
,

Qi = −κT,i + ςπTEi , Ji = ςπT,i + ςEi , (41)

where Ci jkl = ωC0
i jkl and ω = 1/α with an update of the

damage parameter in each time step,

α := α + �tα•, (42)

where the evolution is given by

α• =
⎧
⎨
⎩
k
T − TTr

TTr

, T > TTr

0, T ≤ TTr

(43)

Thematerial parameters,Ci jkl , D, κ ,π , c, and ς are constant.
For an isotropic material,

Ci jkl = λδi jδkl + μδikδ jl + μδilδ jk, (44)

is given by Lame parameters, λ, μ, in connection with the
so-called engineering constants, Young’s modulus, E , and
Poisson’s ratio, ν, as follows:

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (45)

4 Computational example

For solving the set of coupled and nonlinear partial differ-
ential equations represented by the weak form in Eq. (40),
we employ the open source packages developed under the
FEniCS project by using the parameters collected from [18,
Table 8.12] and [46], compiled in Table 1.We emphasize that
the solution of all unknowns are obtained at once. Therefore,
in each node, 8 unknowns, {φ, A1, A2, A3, u1, u2, u3, T }
are computed in three-dimensional space leading to a large
system to solve. All computation has been established by
the open-source codes called FEniCS. Standard Newton–
Raphson linearization is used by linearizing the system at
the partial differential equations’ level with symbolic differ-
entiation. Hence, the nonlinear material modeling as well
as the nonlinearities introduced in the entropy production
have been utilizedmasterfullywithout causing any numerical
problems. For solving the linearized system, we use the gen-
eralizedminimal residual method gmres as an iterative solver
with an algebraic multigrid amg preconditioner and an over-
relaxation of 1.05 by using parallel computing viampirun on
a Ubuntu operating system in one node. We stress that the
over-relaxation in an iterative solution is of importance for
such a coupled problem with different types of differential
equations. The scalability of the algorithm is very high, we
have used “only” 20 cores1 for the problem with 134,904
degrees of freedom for in total 1000 time steps lasting 17h
of computing time. The shown application is one example
and by simply changing the geometry and boundary condi-
tions, various examples can be simulated. For motivating the

1 Intel Xeon Broadwell-EX series E7-4850.
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Table 1 Coefficients and
material parameters used in the
simulation with the following
units: mm for length, tonne or
mg for mass, s for time, mA for
current, K for temperature
leading to N, MPa, mJ, mW, V,
and μT

Parameter Variable Value Unit

Reference temperature Tref. 310 K

Young’s modulus E 100 MPa =̂106 N/m2

Poisson’s ratio ν 0.45

Electric conductivity ς 0.23 mS/mm =̂ 1/(�m)

Mass density ρ 1000 × 10−12 mg/mm3 =̂1000kg/m3

Thermal conductivity κ 0.96 mW/(mmK) =̂ W/(mK)

Specific heat capacity c 3770 × 106 mJ/(mgK) =̂3770 J/(kgK)

Convective heat transfer h 0 mW/(mm2 K) =̂103W/(m2 K)

Peltier constant π 0 V/K

Damage parameter D 1

Damage rate k 0.8

Threshold temperature TTr 330 K

Fig. 1 CAD model of a hand
taken from [30]. Left: rendering
in SolidWorks [30]. Right:
model with tetrahedron mesh of
16,803 nodes generated from
the CAD file by using NetGen
algorithms in Salome

scientific exchange, we make the code publicly available in
[1] to be used under the GNU Public license as in [24].

The application shown here is an electrocution at the
extremities caused by a lightning. Consider the following
boundary condition:

φ = φamp sin(2πνt), (46)

where the simulation time is half of the period, 1/(2ν), cho-
sen as 50ms, which is realistic for a lightning. The amplitude
is chosen great enough to obtain a couple of ampere electric
current, whereas in a lightning up to 30kA is possible. A part
of the human body, herein the hand as in Fig. 1, is used as
ground such that electric current flows over the hand.We sim-
ply use the aforementioned boundary condition on one end,
namely at the tip of the middle finger, and ground the system
by setting the electric potential to zero on the other hand.
Indeed in reality, the grounding would be via the feet to the
Earth; but the results would be the same since the generated

potential difference between the wrist and tip of the finger is
decisive. In order to demonstrate the convergence behavior in
this coupled and nonlinear problemwith the proposedmono-
lithic solution technique,we simply generate threemeshes by
varying the minimum and maximum sizes of elements in the
triangulation as 1, 1.5, and 2. This change leads to almost a 1,
1.5, and 2 times degrees of freedom in the three subsequent
meshes.With the aforementioned boundary conditions, at the
instant 10ms, we compile the results of computed quantities,
u,φ, A, T , evaluated at themiddle of the hand in Table 2. The
expected monotonic convergence behavior demonstrates the
reliability of the results. Herein we choose the third mesh
for further analysis. The (linear) distribution of the electric
potential generates an electric current localized at the fin-
ger tip as demonstrated in Fig. 2. The displacement fails to
be significant as it is solely induced by the electromagnetic
fields since we have ignored the thermal expansion.

For simplicity, wemodel thewhole continuumbody out of
the same material. Technically, especially for the wrist sec-

123



Computational Mechanics

Table 2 Convergence analysis
of the employed algorithm

Degrees of freedom |u| in mm φ in V |A| in μTmm T in K

68,592 1.686 × 10−4 40.701 × 103 5.699 × 10−7 527.7

111,008 1.710 × 10−4 40.554 × 103 6.696 × 10−7 523.6

134,904 1.744 × 10−4 40.544 × 103 6.694 × 10−7 521.5

Fig. 2 Simulation results of the
electrocution at the maximum of
the harmonic electric potential,
t = 25ms by using ParaView.
Left: the distribution of the
electric potential, φ, in colors
and the electric current, J , as
scaled arrows. Right: the
displacement is shown by
scaling the model 50k times for
the purpose of visualization.
(Color figure online)

tion, we need tomodel bones and tissue differently. However,
modeling with different layers of skin, tissue, and bone sec-
tions are simple to construct when the geometry details are
present and material parameters are available. Herein, we
accomplish a general simulation code and demonstrate its
ability to perform such a computation presenting the accu-
mulated damage as a result of Joule’s heat as shown inFig. 3.
We emphasize that the evolution equation is constructed in
such a way that the damage parameter only increases (no
healing occurs). Indeed, for the simulation lasting only 50ms,
this simplification is easily justified. The distribution of the
damage parameter is identical to the temperature, which is
steering the evolution of α. For a very short amount of time,
the temperature is very high, however, the real measure of
the damage is the intensity of the heat over time that be
given by an appropriate evolution equation. We have imple-
mented a very simple linear relation and discussed another
more sophisticated evolution equation, which is not feasible
because of the fit parameters. The code allows to do simu-
lations with that model as well. After a parameter fitting for
any evolution equation, depending on the value of the damage
parameter, it might be possible to evaluate the seriousness of
the accident.

All results are obtained by solving the transient equations
at once in each time step, we call this method monolithic in
time and emphasize that the accuracyof the coupling between
electromagnetism and thermomechanics is the highest possi-
ble. By having acquired reliable solutions, we can investigate
the roles of each term in the solution for this application. For

Fig. 3 Simulation results at t = 50ms, the accumulated damage α

is shown in color, qualitatively we expect that the maximum damage
indicates a burnt tissue. (Color figure online)

example, the deformation is clearly not significant through-
out the simulation. As the duration of the application is short
and we have left out the thermal expansion, we only simulate
the deformation caused by the Lorentz force. Moreover,
the magnetic potential has no significant effect as we are
not interested in mechanics affected by the magnetic flux. A
counter-example would be the effect of electromagnetism on
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blood flow, whereas the blood is magnetized and responds to
the electromagnetic fields greatly. The application herein is a
demonstration how to extend the general formulation of elec-
tromagnetismand thermomechanics for a tissue typematerial
including damage. All governing equations are solved tran-
sient in time for alternating current (AC) by using continuous
Lagrange an finite elements without any simplifications
such that the method can be used for other applications as
well; the code is to be found in [1] for further use under the
GNU Public license as in [24].

5 Conclusion

A general framework has been presented for a tissue type
soft matter by using Fung material model. This formula-
tion includes governing equations for solving electromag-
netic and thermomechanical fields all together by means of
open-source packages known under FEniCS. The govern-
ing equations are nonlinear and coupled; solving them is
often restricted by numerical problems, especially in elec-
tromagnetism. By using a novel approach, we have obtained
governing equations and presented a realistic application, in
which the solution of all fields has been realized without any
numerical problems by using parallel computing and itera-
tive solvers (with preconditioning). The transient solution of
the application under AC has resulted in intuitively correct
results for a serious damage resulted by lightning to extrem-
ities.
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