Numerical Modeling of Thermo-
Mechanically Induced Stress in
Substrates for Droplet-Based
Additive Manufacturing
Processes

Within the scope of additive manufacturing (AM) methods, a large number of popular fab-
rication techniques involve high-temperature droplets being targeted to a substrate for
deposition. In such methods, an “ink” to be deposited is tailor-made to fit the desired appli-
cation. Concentrated stresses are induced on the substrate in such procedures. A numerical
simulation framework that can return quantitative and qualitative insights regarding the
mechanical response of the substrate is proposed in this paper. A combined smoothed par-
ticle hydrodynamics (SPH)-finite element (FE) model is developed to solve the governing
coupled thermo-mechanical equations, for the case of Newtonian inks. We also highlight
the usage of consistent SPH formulations in order to recover first-order accuracy for the
gradient and Laplacian operators. This allows one to solve the heat-equation more accu-
rately in the presence of free-surfaces. The proposed framework is then utilized to simulate
a hot droplet impacting a flat substrate. [DOI: 10.1115/1.4043254]
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1 Introduction

Additive manufacturing (AM) methods are becoming common
choice for fabricating cutting edge devices. AM broadly covers
various methods that involve droplets being deposited onto a sur-
face, such as droplet based manufacturing (DBM) [1], ink-jet print-
ing [2,3], LIFT (laser-induced forward transfer, [4—6]) and direct
ink writing (DIW, [7]). In some cases, the droplets may be laden
with extremely fine micro or nano materials tailored to each specific
application, where good examples are given in Refs. [8,9]. Despite
the considerable amount of recent advancement in additive manu-
facturing technologies, the development of numerical frameworks
that may be applied to such methods has been mostly stagnant.

When the targeted substrate is expected to be fragile, the integrity
of the substrate during the deposition process is critical for the engi-
neer. During the process, the induced stress within the substrate is
highly dependent on both heat transfer and momentum transfer
between the droplet and the substrate.

In most cases, observations can only be made after a resource
consuming experimental process [10-13]. We propose a new
numerical framework, based directly on the continuum equations
involved in such processes. The proposed numerical framework
involves a thermo-mechanical solution solved via SPH (smoothed
particle hydrodynamics) and a one-way coupled finite element
method (FEM) setup which is used to compute the thermal/mechan-
ical stress induced in the impacted solid. Advantages of such an
approach includes:

e Computationally affordable simulation of the free-surface fluid
object (droplet).

e Rapidly deforming free-surfaces of the fluid object is trivially
represented.

e Obviates the difficulties due to time step differences within the
solid domain and the fluid domain.

During the process, the geometry of the fluid droplet undergoes
rapid deformation. A mesh-based method (such as the finite
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element method) will be very expensive for such problems, due
to the re-meshing process that will be required after each time
step. Thus, a mesh-free method such as SPH can be an appropriate
alternative approach. The main intention of this paper is to provide
an effective numerical framework that can assist the engineer
designing a droplet-based manufacturing process (Fig. 1).

This paper is organized as follows. First, we state the governing

equations of the problem. Second, a detailed explanation regarding
the proposed discretization of the governing equations, for a
Newtonian-type ink, is given. Third, a numerical convergence
study is performed to justify the usage of the framework. Fourth,
a practical numerical example is provided to illustrate the method,
along with a brief comparison against a previously developed pre-
dictive model regarding heat penetration. Finally, we mention
some limitations of the proposed approach, which will be investi-
gated in future work.
Remark. In some applications, the composition of the ink may
dictate the viscous behavior the ink. The droplet must be modeled
as a non-Newtonian fluid in this case. While the topic regarding
solving non-Newtonian flows with SPH exceeds the scope of this
paper, a brief note regarding the solution process for such problems
will be given later in this paper.

2 Governing Equations

2.1 Navier-Stokes Equation for Newtonian Fluids. The
incompressible Navier—Stokes equations in Lagrangian formalism

IMPACT
DROPLET
SURFACE SURFACE

Fig. 1 Droplet impacting a surface
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are the field equations:
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where for a Newtonian fluid
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where r and u are the position vector and the velocity vector,
respectively, p is the density of the fluid, g is the body force, 6/ is
the stress tensor of the fluid, u is the dynamic viscosity of the
fluid, and p represents the pressure. Note that D(-)/Dt represents
the material derivative.

SPH is a mesh-free numerical method that can be used to discre-
tize various continuum mechanics problems. Originally intended
for astrophysical problems, SPH found many practical usage
cases in analyzing fluid flows involving free-surfaces [14-16].
The set of equations given by SPH is usually closed with a
weakly compressible scheme in which the pressure term is directly
correlated with the density variable through an equation of state,
which is used throughout this paper:

MR
p 7/POC() 2 ()

where pq represents the reference density, ¢, represents the speed of
sound, and y is a constant, usually chosen to be 7. This type of equa-
tion of state is typically known as a variant of Tait’s equation of
state, and is widely used in the SPH community.

For the problem in interest, Equation (3) should incorporate the
surface tension, where its effect may be significant in microscale
droplets:

Du
P =V-6r+pg+

Dr - (©)

S
L
Surface Tension
There are two popular methods for implementing surface tension.
In the context of SPH, one method originally proposed by Morris
[17] takes the following form:
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dsken
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where ¢ is the surface tension coefficient of the fluid—air interface,
is the curvature of the free-surface, and n is the surface normal
defined at x;. Also, &, is a function such that

1, xeQ
s0={y e

where Qpg represents the subset of the fluid domain located on
the free-surface and Q; represents the subset of the fluid domain
located in the interior, so that x € Qps U Q; =Q and Qpg N Q; =
@. This is often called the continuum surface force (CSF)
surface tension model introduced in Ref. [17].

The method has several drawbacks. To accurately evaluate the
surface curvature, it is advantageous that kernel truncation does
not occur near the free surface. To alleviate errors due to such a trun-
cation, it is thus required to model the surrounding medium (such as
air) with a separate set of SPH particles. The method also is reported
to return surface curvatures with large errors [18] when particles are
sparsely distributed (such as small detached droplets).

Another method to model surface tension is the IIF (inter-particle
interaction force) model, which directly adds forces between the
SPH particles that represent attraction/repulsion forces due to

(®)
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molecular interactions [19]. The forces only act on the particles
near the free surface since the forces cancel each other out in the
interior of the fluid. Since the force is not derived from a continuum
model, the force must be calibrated to bridge the scale between the
SPH and the molecular particles. When calibrated, the model accu-
rately reproduces surface tension effects, without the computation
of the free-surface curvature, which is prone to generate numerical
errors. In Ref. [19], the authors employ the following interaction
model:
£ = { sjcos(xry)es, g <h ©
¥ 0, ri>h

where s;; is a parameter used to calibrate the surface tension model.
In this paper, we propose a modified form of this interaction model
that weighs the interaction force with the mass m;, in order to
account for the difference in mass, with s as a calibration parameter
and that exactly conserves linear momentum:

s 2m;
£ = mi+m;
/A 0
s

2.2 Thermo-Elasticity. For the purpose of this work, we
assume that the deformation of the solid due to change in tempera-
ture and momentum transfer from the fluid droplet is small. We also
consider the timescale of the momentum transfer process to be sig-
nificantly longer than the timescale of the shock waves traveling
throughout the solid (which is directly correlated with the speed
of sound in the solid). Thus, a linear-quasi-static formulation may
be justified:

r,-jsh
r,-j>h

cos(lr e o)

V.o,=—f.y (11)
G
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1
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where 6, is the Cauchy stress of the solid, f,,, is the external forces
exerted by the impacting fluid, € is the resulting strain, u are the dis-
placements, A is the first Lamé constant, G is the shear modulus, a is
the thermal expansion coefficient, and AT is the increase in temper-
ature. We employ the finite element method as described later in the
paper (Fig. 2).

Initialize System (Mass, Positions, etc)

—

Neighbor Search

|

Compute SPH Approximations

|

Compute SPH Interactions

|

Save Sensor Values >

|

Update System, Output Results

|

Fig. 2 Algorithmic procedures of the code

Compute Stress (FEM)
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3 Discretization

3.1 Navier-Stokes. We discretize the Navier—Stokes equation

using SPH:
bu__[1 My
N T
Dp
Di ={pV-u) (15)
P =feos(p) (16)

where (-) represents the discretized version of the expression using
SPH and fros represents the equation of state. The pressure gradient
contribution in Eq. (14) can be written in the symmetric form spe-
cifically found in [16]:

{ol-

Throughout the paper, the index i represents the ith SPH particle,
while j € \V; represents the set of neighbors of the ith particle. W;;
is the kernel function centered around particle i, V;W;; represents
the gradient of the kernel, p; is the pressure of particle i, p; is the
pressure of particle j, p; is the density of particle 7, p; is the
density of particle j, and m; and m; represent the mass of particle i
and j, respectively. The Quintic Wendland kernel was employed
due to its superior properties when used with SPH, which was rig-
orously verified in Ref. [20]. As in Ref. [21], the viscosity contribu-
tion is discretized as

b
P i

The continuity equation is discretized with the method found in
Ref. [22], also known as 6-SPH:

an
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where D; is the “diffusion” term, defined as
=2y, Wiy, (20)
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where 0 is a tunable constant (usually chosen to be 0.1), & is the SPH
smoothing length, cy is the speed of sound, and y;; is defined as

1
5 ((Vip) + @n

l//zj=(.0j_,0i)—2
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where (V(-)) represents the renormalized gradient operator.
(V1p;) can then be written as

(Vip) =Bi > (o= p)ViWyV (22)

JEN )

Here, B, is the first derivative renormalization matrix suggested by
Oger et al. [23], which is defined as

Bi=|- rj ® VW;V;
JENGD

(23)

Physically, this term adds “artificial diffusivity” to the continuity
equation. Although exact conservation of mass no longer holds,
the added diffusivity greatly increases stability throughout the
system.
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3.2 Heat Equation. We now represent the balance of energy
for an incompressible fluid, also in Lagrangian formalism:

De
—=04+ V. (VT
Py (kVT)
Here, e is the specific energy, k is the thermal conductivity of the
medium, and @ is the dissipation function. This accounts for the
dissipation that occurs in the fluid due to viscous effects, and for
an incompressible fluid, where bulk viscosity is assumed to be neg-

ligible,

(24)

®=2uD:D 25)

1
D=_(Vu+ (Vu) 26
2( u+ (V') (26)
The significance of the dissipation due to the deforming fluid for our
problem is low, and is excluded in our formulation. Note that this
assumption may not hold in other applications (such as lubricants
in bearings). Also, since the droplet is assumed to be incompress-
ible, temperature increase due to adiabatic compression of the
fluid is ignored. Equation (24) now simplifies to
br V- (kVT) 27)
C— = .
-
Here, ¢ represents the specific heat capacity of the medium. The
energy equations must solved for both the fluid and the solid, in
order to model the heat transfer between the fluid droplet and the
impacted surface. The temperature of the system is solved accord-
ing to the discretized version of the heat equation:

DT
—=(V - (kVT 28
P, (V- (kVT)) (28)
In Ref. [24], the following discretization was suggested:
DT; 4m;  kik; - ViW;
o—t= ] RUMALLL] (29)
Di  Srwpwikith " rite

Figure 3 shows a brief comparison of the two Laplacian opera-
tors on a 11x11 cartesian particle distribution representing
x=10, 1], y =0, 1], f(x, y) =1 (** + y*). The analytical Laplacian
of f(x, y) should be 2, in this case. It is a well known that when
using conventional SPH operators (such as the one above), the
accuracy of the Laplacian severely deteriorates and fails to
recover the correct value near the free surface (Fig. 3) as mentioned
in the original paper [25]. Such effects are usually ignored with jus-
tification [26] when discretizing the viscosity in Eq. (14), but accu-
rately computing the heat transfer inside our defined geometry is an
important aspect which should be addressed.

Recent advancement in SPH discretization techniques [27,28]
suggests the following renormalization tensor for second deriva-
tives, which recovers first-order accuracy of the Laplacian for an

arbitrary distribution of SPH particles:
<ﬁ =/ € V|ﬁ>V,
ij

(30)

(Vify) = > e ®ViW;

JEN ks (i)

Using the above correction, it is no longer required that the par-
ticles must retain the predefined stencil (dx) to reach convergence.
Here, L; is the correction tensor for the second derivative and is
the solution to the following set of equations:

—§" = Z (A€l + 17 €LY + €5(ViWy) V) (31)
JEN Fs(i)
A =GN (VW) V) (32)

JEN Es(i)
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Fig. 3 Left: particle configuration. Right: Laplacian @ y=0.5,
h=3Ax. (a) V2{1(x*+y?)) uncorrected Laplacian and (b)
V2{1(x? + y?)) corrected Laplacian (our method).

with m, n, o, p, and g being the indices used for the Einstein notation.

In 3D, the above system is a 6 x 6 matrix where the components of

the solution vector correspond to the entries of L; (which is in

result a function of A; = Aﬁ."”"ek ®e, ®e,and §; =5"e, @ e,).
Using this correction, we thus modify Equation (29) to

DT, T,—T;
Tij

; 4 ( kik; ;
Ci = Z |:p ( )(Ll . eij®V,'Wl‘j)(
Dt vty ki + k;
(33)

here, k; or k; is defined to be the thermal conductivity of the fluid or
solid, depending on which domain the SPH particles is defined to be
within.

Although the above correction seems promising for many situa-
tions, the method carries a drawback. For a correction to exist, a par-
ticle requires at least one neighboring particle in each quadrant with
respect to itself. Thus, in 3D, at least eight neighbors are required. A
simple work around for particles where the correction is not defined
is to resort back to Eq. (29).

3.3 Finite Element Method. Previous effort regarding model-
ing solids via SPH were made in Refs. [29-31]. The main weakness
of such formulations were stability and consistency. Since the solid
domain of our problem is assumed to involve a stiff material (with
stiffness being on the order of 100 GPas), the fluid domain and the
solid domain would require timesteps with large discrepancies, and
renders modeling the whole domain with SPH difficult.

The FEM is a well-established method for discretizing PDEs and
is adequate for modeling solid mechanics problems; thus is used to
model the solid substrate in our problem. Each timestep, after the
temperature field and the velocity/position field is updated, a
linear-quasi-static thermo-elasticity problem is solved within the
solid domain. Writing the weak form of the proposed problem:

j 6,(v):e(V)dQ = J
Q Q
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s

Fig. 4 SPH particles placed on top of finite element nodes

oy(v)= i(V SV — aAT<3 + 2%))1 +2Ge(v) (35)

e(v) = % (Vv + (Vw7 (36)
where v is the solution (displacement field) of the problem, V is an
arbitrary test function defined over the mesh, and AT (temperature
change), o;n|r, (traction boundary conditions) are values defined
over Q; and I',, respectively, and are precalculated from the SPH
scheme. For simplicity, the formulation is chosen to be quasi-static.
This is under the assumption that the impact speed is comparably
smaller than the speed of the shock waves traveling through the solid.

The weak form above is then discretized via an isoparametric
mapping with linear shape functions, and is represented as a set
of linear equations involving the displacement of the nodes:

Kv=f @37

where v is the displacement field, K is the stiffness matrix, and f is
computed with the inputs (temperature, force) subjected to the solid
mesh. The displacement field is then post-processed to obtain the
desired stress distributions. Detailed solution procedures are
beyond the scope of this paper, and we refer to well-known litera-
ture such as Refs. [32,33] for details.

4 Numerical Algorithm

The above equations are solved explicitly for each field, similar
to the formulations found in Ref. [34]. The main numerical proce-
dures for each time-step follow as (also depicted in Fig. 2)

(i) Neighbor searching.

(ii) Solve the momentum equation for the fluid with SPH.
(iii) Solve the heat equation for the fluid/solid with SPH.
(iv) Solve the mechanical response of the solid with FEM.

4.1 SPH-FEM 1-Way Coupling. As seen in Fig. 2, the infor-
mation obtained from the SPH solution is fed into the FEM solver,
in a 1-way coupled fashion. This is obtained by placing a grid of
SPH particles on top of the finite element nodes (Fig. 4) where rel-
evant. The FEM solver takes the inputs (pressure field/viscous
forces/temperature) and then solves the thermoelasticity problem
stated earlier.

4.2 Neighbor Searching. Many particle methods, including
SPH, rely on Neighbor Searching algorithms before computing
the interactions between the particles. Here, we employ the neigh-
bor search algorithm found at github,? which is a variant of the
Compact Hashing algorithm developed in Ref. [35].

2Koschier, D., 2017,
sampling

“Compactnsearch,” https:/github.com/thinks/poisson-disk-
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4.3 Particle Interaction. In order to compute the correction
matrices and the diffusion term used in 6-SPH, several passes (the
normalized density gradients, such as (V;p;) and the normalization
matrices L; and B; need to be computed first) are conducted over
the particles. The linear algebra library [36] was used to solve the
6 x6 matrices involved in the second-derivative renormalization
matrices (L;).

44 SPH-FEM Coupling and Thermoelasticity. A finite
element mesh is defined over the solid domain, where the nodes
coincide with the SPH particles. “Sensor Particles” that are
located near the surface of the solid directly feed the observed tem-
perature and forces to the finite element nodes. This input can be
regarded as the corresponding nodal loading. The open-source
FEM library by Alnas et al. [37] was used to define and solve a
thermoelasticity problem.

4.5 Initial Placement. To remove the aliased edges of a
simple-rejection-sampled Cartesian placement, the initial particle
representation of the fluid droglet was created using a 3D Poisson
sampling algorithm by Hinks.

The SPH particles representing the solid domain were placed
using a simple Cartesian placement. Before the first timestep, the
mass of each SPH particle is assigned using the number density:

Po

= o (38)
Z_ie/\/ (i) Wij

m; =

5 Convergence Study

5.1 Heat Equation With Consistent Operators. To highlight
the effectiveness of the consistent operators, we compare the results
to the inconsistent one by solving a (dimensionless) 1D transient heat
equation. A uniform rod of length L=1 and initial temperature dis-
tribution 7T(x, r=0)=0, x€ [0, 1] is placed between two walls with
constant temperature T, =0, T,,5,= 1 (Fig. 5). This is an interesting
problem, since at (x, t) = (0, 0), the solution is discontinuous.

The analytical time-dependent solution for this problem is given
by

Tunatsieal(t, 1) = 1 —Erf(i> (39)

2V

We compare the solutions obtained by using the formulation
given in Refs. [24,28] by solving the above transient 1D heat trans-
fer problem until #=0.03 (Fig. 6) with three different discretization
scales (80 nodes, 160 nodes, and 320 nodes) and with smoothing
radius 3Ax. We observe convergence from the corrected operators,
in contrast to the conventional operators. This is a well-known issue
when solving the heat equation with SPH, since the conventional
operators assume sufficient amount of smoothness of the solution.

5.2 SPH-FEM Momentum Coupling. We now justify the
approach regarding heat-transfer and mechanical coupling
between SPH/FEM.

We verify the 1-way momentum coupling scheme described
earlier by considering a steady-state 2D Poiseuille flow. Finite ele-
ments were used to represent the solid boundaries, while SPH par-
ticles represented the Newtonian fluid (Fig. 7). Viscosity of the fluid
will cause shear on the walls, where the analytical steady-state
velocity profile is given by

vi(y) = (H2/2,4)<_ %’) (% (1 _ %))

Hinks, T., 2015,
poisson-disk-sampling

(40)

“Poisson Disc  Sampling,” https:/github.com/thinks/
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T(t=0x)=0

?}!- ft = 0
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Fig. 5 1D transient heat transfer problem schematic

Temperature Distribution, Compared to analytical solution
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Fig. 6 1D transient heat transfer problem @ t=0.03: (a) T(t=
0.03, x) and (b) error analysis
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Fig. 7 Poiseuille flow shear transfer test

where H is the distance between the two plates. The analytical shear
stress at the wall is given by

Ovy
Txy =

w =G (41)

For the test, we use H=1, ¢ =0.001, dp/ox =10, with periodic
boundary conditions on the inlet/outlet. The thickness of the wall
modeled with finite elements was chosen to be 7=0.25. All the
y-direction degree of freedoms on the finite element mesh were
enforced to be 0 in order to rule out any volumetric deformations.
Then, the average stress throughout the finite element domain
was computed by

Cave = j o(x, y)dV (42)
Vv
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Absolute Average Error vs Discretization
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Fig. 8 Average shear stress error

and was compared (Fig. 8) against the analytical value (z,, =0.02
from Eq. (40)). The results indicate that the coupling technique is
suitable to model consistent momentum transfer between the solid
and the fluid.

6 Numerical Example

6.1 Thermal Droplet Impact Case. A numerical example
involving a droplet with high-temperature impacting a low-
temperature surface was performed. Approximately 2 x 10° parti-
cles were used to represent the droplet and the solid domain. The
solid substrate was clamped down with Dirichlet boundary condi-
tions on its four sides, and was assumed to be thermally insulated
from the surrounding air.

6.2 Fluid Properties.

po=1000 (kg/m®) (rest density)

Ty = 100 (°C) (initial temperature)

¢, =4000 (J/K kg) (specific heat)

kr=0.6 (W/m K) (thermal conductivity)
ur=0.0003 (Pa s) (dynamic viscosity of fluid)
co=500 (m/s) (sound of speed)

D =0.1 (mm) (diameter of droplet)

vo =50 (m/s) (impact velocity)

s=1x10° (N) (surface tension coefficient)

1, =2.0 x 107 (s) (characteristic time)

Note: The below parameters represent the properties of water, in
general.

6.3 Solid Properties.

L=2mmx2 mmx0.26 mm

ps=3950 (kg/m?) (specific mass)

To.s =20(°C) (initial temperature)

1s=0.0003 (Pa s) (dynamic viscosity of solid/fluid interface)
¢, =900 (J/kg K) (specific heat)

ky=10 (W/m K) (thermal conductivity)

E =300 (GPa)

v=0.21 (Poisson’s ratio)

a=8.1x107°% (thermal expansion coefficient)

Note: The below parameters broadly represent the properties of
typical alumina.

6.4 General Parameters.

Ax=2.5%107% (m) (particle stencil)
h=3Ax (m) (smoothing length)

y =7 (tait EOS parameter)
dr=2.5x1071%(s) (timestep)

061001-6 / Vol. 141, JUNE 2019

6.5 Analysis. Here, we have demonstrated an useful example
regarding the usage of the computational framework we have intro-
duced in this paper. In detail, Fig. 9 shows the temperature of the dro-
plet along with the evolution of the droplet geometry. Figure 10
shows the temperature distribution of the substrate at #/7.=1.75.

Initially, the heat transfer is confined within the small contact
patch of the droplet, where the temperature arises locally. The time-
scale of the impact limits the increase of temperature of the solid at
deeper depths, as seen in Fig. 12. We observe that for the timescale
of interest, the heat transfer occurring between the fluid and the
solid dominates the temperature increase in the solid.

The stress within the substrate increases with time (Fig. 11), as
the droplet breaks spreads over the surface. The stress is the
largest near the surface of the substrate, as seen in Fig. 12. This is
due to the large heat and momentum transfer between the droplet
and the surface at the contact patch (Fig. 11). The contact patch
between the droplet and the substrate expands radially.

We focus on time #/t.=1.75, where the droplet is fully deposited
onto the substrate (as shown in Fig. 9). Figure 10 shows the surface

. _ .
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. - |
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Fig. 9 Evolution of a fluid droplet impacting the substrate
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Fig. 13 Temperature evolution on substrate surface, with
respect to time

temperature distribution, which indicates that the majority of the
heat transfer is made through the initial contact patch with a dia-
meter of roughly 0.6 times the initial droplet diameter (0.06 mm)
(Fig. 13). The effective (Von-Mises) stress experienced by the sub-
strate along the cross-section is depicted in Fig. 12, which shows the
concentrated stress near the surface (Fig. 14).
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For the homogeneous material (alumina) in consideration for the
current example, we can predict that no type of failure will occur,
since the stress levels shown in Fig. 12 are well below the known
failure criterion. On the other hand, for tailor-made substrates
obtained by mixing specific functional microparticles into a
binding matrix, this type of concentrated stresses confined to the
surface will usually result in a delamination-type defect [38]. This
is a well-known micromechanical pheonomenon, and is due to the
stress concentrations that occur between the interface of the func-
tional particle and the matrix. The stress concentration factors may
become extremely high in certain situations, as seen in Ref. [39].
Thus, for such applications, it is critical to first find the stress concen-
tration factor by experiments or computational methods via RVE
(representative volume element) methods before making a conclu-
sion regarding the design of the deposition process.

7 Discussion

7.1 Summary. An enhanced formulation of SPH was coupled
with a finite element solver to deliver a practical tool that can
quickly simulate the thermo-mechanical stresses occurring on the
substrate of such processes. The modified corrected SPH scheme
robustly handles various starting configurations, including free sur-
faces, while providing improved accuracy over its conventional
counterpart. The coupling between SPH and FEM was achieved
via staggering of SPH particles on top of finite element nodes,
where the physics observed by the SPH particles were directly
enforced on the corresponding finite element node. To summarize,
the resulting framework allows:

e Fast and accurate modeling of Newtonian fluid droplets.

e Thermal and mechanical coupling between fluids with free-
surfaces and solids.

e Removal of timestep limitations imposed due to different CFL
conditions for the solid and fluid.

As noted earlier, the above aspects are all very useful features to
have when conducting numerical experiments on droplet deposition
manufacturing techniques. Mesh-based approaches require frequent
re-meshing, and may become computationally extremely expensive.

Overall, a rapid simulation framework that can provide useful
insight regarding the induced mechanical stresses for droplet-based
additive manufacturing was developed. With an example demon-
strating a droplet impacting a solid surface, we have shown that
the framework is capable of providing useful insights that may be
sometimes hard to obtain by purely experimental methods. Justifi-
cation of the framework was also given by performing convergence
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Fig. 14 Stress components, t/t. =1.75
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analysis on the thermal/mechanical coupling methods. Since the
numerical results are derived from a direct numerical simulation
of the proposed continuum problem, the various material/mechani-
cal parameters used in the simulation can be altered freely to suit the
users’ needs.

7.2 Limitations. Although the method assumes the fluid
model to be homogeneous, this is not necessarily the case for
many emerging additive manufacturing methods. In some applica-
tions, specifically tailored micro/nano materials are mixed with a
base fluid [2,8,9,40,41]. Often, these are referred to as “functiona-
lized” inks.

In many cases, mixing functional powders into the solvent forces
the ink to have shear-thinning properties, along with a yielding
stress. The mechanical behavior of such inks can usually be
modeled with non-Newtonian fluid models, one being the popular
Herschel-Bulkley fluid model. For this model, the shear stress of
a fluid can be written as

=1, +Ky" (43)

where 7, is the yield stress, y is the effective shear rate, and K, n
are parameters to be fitted. Many previous work on DIW fabrica-
tion methods have successfully employed [7.42] the Herschel
Bulkley model to explain the mechanical behaviour of these
inks. In numerical implementations, the “Regularized Herschel
Bulkley” model is frequently used, where a shear-rate-dependent
effective viscosity is used for the viscosity term in the Navier—
Stokes equations:

7 <7o
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For unyielded regions within the fluid, the high effective viscos-
ity will make the fluid behave similar to a rigid body. For yielded
regions, the viscosity will be several magnitudes smaller compared
to the unyielded regions. Therefore, with an explicit time-stepping
approach with SPH, the problem becomes very difficult to solve,
and an implicit time stepping scheme must be implemented to alle-
viate the difficulties. To our best knowledge, no such schemes
have been devised specifically for non-Newtonian fluids with
SPH. This topic is currently under investigation by the authors.
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