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Abstract
Rapid free-form printing of particle-functionalized materials is an integral component of 3D printing and additive man-
ufacturing. Such processes consist of attaching a dispenser to a robot arm which then releases droplets of specialized
mixtures in free-space that are deposited onto a substrate. These approaches are popular because they utilize widely-available,
highly-programmable, robots. However, often the release of a complex mixture in free-space is somewhat imprecise, thus
electrodynamic field control has been proposed as a possible remedy to enhance the precision of such processes. Specifically,
electrodynamic control of the material is achieved by electrifying the released material in the presence of a prescribed ambi-
ent electrical field generated from the substrate, in order to guide it to the desired position. There are many components that
comprise such a system, thus motivating the construction of a simulation tool framework assembling submodels of the:

• kinematics of the robot arm and the dispenser-printer head,
• electrodynamic and gravitational forces on the released material,
• dynamics of the released material and
• conductive, convective and radiative cooling of the media.

The modular system structure allows for easy replacement of submodels within the overall framework. Numerical simulations
are undertaken to illustrate the overall systemmodel, which is comprised of an assembly of submodels. Afterwards, aMachine
LearningAlgorithm (MLA) is developed to identify and optimize the proper system parameters which deliver a desired printed
pattern. Specifically, an MLA is developed to ascertain the appropriate combination of robotic motion and electrical fields
needed to create structures which would be difficult or impossible by purely mechanical means alone. Afterwards, extensions
involving more detailed models are then provided, based on the Discrete Element Method.

Keywords Printing · Electrodynamics · Simulation

1 Introduction

As the rapid digitalization of industry has been taking place,
manufacturers have been scrambling to meld simulation
software with emerging technologies based on embedded
sensor technology, autonomous robotics, virtual reality (VR)
and artificial intelligence (AI). Integrated advanced sensors,
controls, simulation platforms and modeling has made next-
generation advanced manufacturing, sometimes referred to
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as Industry 4.0, possible (Zohdi and Dornfeld [1] and Huang
et al [2]). For the purposes of this paper, we refer to this entire
evolving area as “Advanced Manufacturing”. Advanced
Manufacturing requires the development of models and sim-
ulation tools that can be run rapidly for design purposes,
which then naturally lend themselves to optimization strate-
gies such as Machine Learning Algorithms (MLAs), which
require several hundred or thousand simulation runs during
in an extremely short period of time.

Specialized MLAs, digital twin technology and complex
materials are key factors in these processes, which have now
become critical to industrialized economies. It is estimated
that digitized manufacturing will generate $1 trillion in net
global value over the next four years by streamlining design,
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Fig. 1 Model problem of a
robot with a dispensing printer
head
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manufacturing processes and managing supply chain risks.
One type of paradigm that is useful to determine the parame-
ters needed for multicomponent systems to properly function
is Machine Learning, which has now really become critical
for all forms of advancedmanufacturing, such as 3Dprinting.
A particular type of 3D printing that is becoming popular is
free-form printing, which is comprised of a multi-axis robot
arm equipped with a dispenser that dispenses droplets of spe-
cialized mixtures. However, this type of process has many
design parameters. These approaches are popular because
they utilize widely-available highly-programmable robots
that have been developed for decades in other fields. How-
ever, often the release of a complex mixture in free-space
is somewhat imprecise, thus electrical field control has been
proposed as one possible remedy to enhance the precision of
such processes. Specifically, electrical control of thematerial
is achieved by electrifying the released material in the pres-
ence of a prescribed electric field generated on the substrate,
in order to guide it to the desired position. There are many
components that comprise such a system, thus motivating
the construction of a simulation tool framework in this paper
assembling submodels of:

• The kinematics of the robot arm and the dispenser-printer
head,

• The electrodynamic and gravitational forces on the
released material,

• The dynamics of the released material and
• The conductive, convective and radiative cooling of the
media.

The modular system structure allows for easy replacement
of submodels within the overall framework. In this work,
numerical simulations are undertaken to illustrate the overall
system model, which is comprised of an assembly of sub-
models. An MLA is then developed to identify and optimize
the proper system parameters which deliver a desired printed
pattern. Specifically, an MLA is developed to ascertain the
appropriate combination of robotic motion and electric fields

needed to create structures which would be difficult or
impossible by purely mechanical means alone. Afterwards,
extensions using more detailed models are then provided,
based on the Discrete Element Method.

2 Amodel problem: free-form robotic printer

As a model problem, (Fig. 1), we consider a robot linkage,
with a mounted dispenser, described via vector loops which
are widely used in the robotics literature (for example, see
Hunt [3], Hartenberg and Denavit [4], Howell [5], McCarthy
[6], [7], Reuleaux [8], Sandor and Erdman [9], Slocum [10],
Suh and Radcliffe [11] and Uicker et al. [12]). Links one and
two are x–y planar, while link three is in the x–z plane. We
assume that we can precisely control the angles and angular
velocities of all of the links in the system. The position vector
(rd ) to the dispenser is given by

rd = rr1 + rr2 + rr3. (1)

Differentiating, a velocity vector loop is generated

vd = ṙr1 + ṙr2 + ṙr3 = ṙd . (2)

In component form, for the x components of position

rdx = rr1cos�1 + rr2cos�2 + rr3sin�3, (3)

for the y components of position

rdy = rr1sin�1 + rr2sin�2 (4)

and for the z components of position

rdz = rr3cos�3, (5)
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Fig. 2 Deposition of “droplets” of a mixtures

where the link lengths are given by rri = ||rri || = √
rri · rri

(for i = 1, 2, 3) and the planar (x–y) angles are mea-
sured counter-clockwise from horizontal right (Fig. 1). The
velocities can subsequently found from differentiating the
component equations of Eqs. 3–16, yielding, for the x com-
ponents of velocity

vdx = − rr1�̇1sin�1 − rr2�̇2sin�2 + rr3�̇3cos�3, (6)

for the y components of velocity,

vdy = rr1�̇1cos�1 + rr2�̇2cos�2 (7)

and for the z components of velocity

vdz = −rr3�̇3sin�3. (8)

The total velocity of the droplet coming out of the dispenser
is the velocity of the dispenser plus the relative droplet dis-
penser velocity (�ve):

v = ve + (v − ve) = ve + �ve. (9)

3 Dynamics of releasedmaterial

The dispensed material, which is released as “syrup-like”
droplets of multiphase mixtures as the robotic system moves
(Fig. 2), is represented by a series of lumped masses. Macro-
particle interaction within the droplet mixture, as well as the
interaction between the droplets of mixtures are not consid-
ered in this part of the analysis, since this is not relevant
for the overall macroscale robot path planning calculations
of the printing process. However, detailed modeling of the
dynamics of the released material is discussed later in the
paper.

Accordingly, for the lumped mass analysis, at a snapshot
in time, and an arbitrary i th lumped mass in the system,
whose dynamics are governed by

mi r̈ i =�elec
i +�

grav
i

+ other external f orces
def= � tot

i (r1, r2, ..., rNm ),

(10)

where r i is the position vector of the i th lumped mass, �elec

are the externally applied electrical force, �
grav
i = mi g is

the gravitational force and� tot
i is the total of the forces acting

on the i th lumped mass.

Remark Often when a complex fluidized mixture exits a dis-
penser, a droplet is formed. However, it can initially exit
as a long slender filament, that will break up into droplets,
due to instabilities. The breakup of a long column of fluid
from a dispenser, possessneting slight perturbations (longi-
tudinal waviness) was first experimentally studied by Plateau
in 1873,who determined that a vertically fallingwater stream
into drops if its wavelength is greater than approximately
3.13–3.18 times its diameter. Subsequently, Rayleigh ana-
lytically proved that a wavy falling column of liquid (with
circular cross-section) will break up into drops if its wave-
length exceeded its circumference. This type of instability
is driven by surface tension, which forces fluids to mini-
mize their surface area. See Papageorgiou [13] and Eggers
[14] for more details. In the case of a dispensed viscous
medium, the degree of fluidity/viscosity influences surface
tension. We refer the reader to Zohdi [15] for detailed simu-
lation of this phenomena. In the present analysis, we assume
that the droplet has been formed. Later in the paper this
stream/droplet phenomenon is discussed further.

4 Construction of targeted electrified field

A key in digital printing is the targeted zonal electrification
of the substrate to guide the material to the precise desired
locations. This is done, as in the classical “xerox” process
by charging pixels on the substrate, turning them on and off
in a controlled manner, to attract the deposited material to
key locations. To construct an electrified pattern, consider an
electric field due to charged external point source, represent-
ing one pixel on the substrate (Fig. 3), which is governed by
Gauss’ law:

∫

A
D · n d A = εE4π ||r − ro||2

=
∫

V
Qc dV = qp ⇒ E = qp

4πε||r − ro||2 n,

(11)
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Fig. 3 Highly targeted feature patterns that are electrified

where D is the electric field flux, E is the electric field (E =
±||E||), Qc is the charge per unit volume, qp is the total
charge at the point source,n is the normal-outward unit vector
and ||r − ro|| is the distance from the point source. To create
the electric field associate with the entire set of pixels, one
simply superposes the individual fields. Thus, using the point
sources, the process is:

1. Activation of point sources

E p = qp
4πε||r i − r p||2 ni→p. (12)

2. Construction of induced e-field:

Eext (r i ) =
Nc∑

p=1

qp
4πε||r i − r p||2 ni→p, (13)

where Nc are the number of charged point sources. The
induced electrical force on the released material is �elec

i =
qi Eext (r i ), where qi is the charge of released material and
Eext is the electrical field constructed by the points on the
substrate.

Remark A general electromagnetic field (as opposed to the
previous purely electrical field) can be introduced in two
parts: (1) Lorentz forces (for charged/electrified materials)
and (2) magnetic forces (for magnetic materials). In mathe-
matical form,

�e+m
i = �

lor ,e+m
i + �

mag
i = qi (Eext + vi × Bext )

︸ ︷︷ ︸
�

lor ,e+m
i

+ �
mag
i ,

(14)

where Lorentz-induced forces from independent external
fields are Eext and Bext is�lor ,e+m

i . The terms Eext and Bext

are considered to be externally controlled and uncoupled
from one another (Jackson [17]). In addition to using elec-
trical fields to guide material to the target location, electrical
fields may be needed help extract the highly viscous particle-
laden material complex from the dispenser. Although this
issue is not simulated here, we refer the reader to Zohdi [16]
for more details.

5 Drag forces

Because the process could be in an open air environment,
drag effects can be relevant. For example, we will employ a
general phenomenological model

�
drag
i = 1

2
ρaCDi ||v f − vi ||(v f − vi )A

D
i , (15)

where CDi is the drag coefficient, AD
i is the reference area,

which for a sphere is AD
i = πR2

i , ρa is the density of the
ambient fluid environment and v f is the velocity of the sur-
rounding medium which, in the case of interest, is air which
is included in the equation of motion for the i th droplet in
the system

mi v̇i = � tot
i = �elec

i + �
grav
i + �

drag
i . (16)

The empirical drag coefficient varies with Reynolds num-
ber. For example, consider the following piecewise relation
(Chow [18]):

• For 0 < Re ≤ 1, CDi = 24
Re ,

• For 1 < Re ≤ 400, CDi = 24
Re0.646

,

• For 400 < Re ≤ 3 × 105, CDi = 0.5,
• For 3× 105 < Re ≤ 2× 106, CDi = 0.000366Re0.4275,
• For 2 × 106 < Re < ∞, CDi = 0.18,

where the local Reynolds number for a drop is Re
def=

2Rρa ||v f −vi ||
μ f

and μ f is the fluid viscosity.1 We note that in
the zero Reynolds number limit the drag is Stokesian. Using
the piecewise relation reduces the drag at the lower Reynolds
number regimes.

Remark The piecewise drag law ofChow [18] is amathemat-
ical description for the Reynolds number over a wide range
and is a curve-fit of extensive data from Schlichting [98].

1 The viscosity coefficient for air is μ f = 0.000018 Pa/s.
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6 Heat transfer

For the thermodynamics of lumpedmasses/drop,we consider
conduction, convection and radiation. Thus, for each lumped
mass/drop (i = 1, 2, ..., Nd ),

miCi θ̇i = Qi + Hci + Hri + Hdi , (17)

where θi is the temperature in degrees Kelvin, Ci is the heat
capacity per unit mass, Qi represents the conductive contri-
bution from the substrate, when in makes contact, the robotic
dispenser and support structures (if any),Hci represents sur-
rounding convection, Hri represents the (infrared) radiation
and Hdi represents the drag heating. It is assumed that the
temperature fields are uniform within the (small) elements
surrounding the lumped masses. This assumption is justi-
fied, i.e. a lumped thermal model (associates with the lumped
masses), ignoring temperature gradients and assuming a uni-
form temperature when the Biot number is small. The Biot
number for a cylindrical element scales with the ratio of
the element volume (V ) to the element surface area (As),
V
As = 4πR3/3

4πR2 = R
3 (R is the radius of the droplet), which

indicates that a uniform temperature distribution is appropri-
ate, since the elements, by definition, are small. Assuming
that the fields are uniform in each element allows for the
following (for the i = 1, 2, ..., Nd lumped masses)

Qi ≈ IKi
θsub − θi

||r i − rsub|| A
c
i , (18)

where IKi is the conductivity, θsub is the temperature of the
substrate, rsub is the position of the substrate and Ac

i = πR2
i

is the contact area associated with the lumpedmass/substrate
pair (i j). This yields, including standard convection and radi-
ation terms

miCi
dθi

dt
= IKi

θsub − θi

||r i − rsub|| A
c
i

︸ ︷︷ ︸
Qi (when in contact)

− hi A
s
i (θi − θs)︸ ︷︷ ︸
Hci

− εiβAs
i (θ

4
i − θ4s )

︸ ︷︷ ︸
Hri

, (19)

where hi is the convection coefficient, As ≈ 4πR2, 0 ≤ εi ≤
1 is the radiative efficiency and β = 5.67×10−8W/(m2K4)

is the Stefan–Boltzmann constant. Upon contact the drop is
assumed to stick and collapse into a roughly cylindrical shape
with the following areas: (a) substrate contact area=πR2 (b)
convective area=πR2 + 2πRL , where L is determined by
the equating the volume of material in the spherical state
to the cylindrical configuration (πR2L = 4πR3/3) that is
exposed and (c) radiative area= πR2 + 2πRL (neglecting
the radiative exchange with the substrate). Finally, although

potentially small, for the drag-heating rate, we take the inner-
product of the drag force with the relative velocity of the drop
to the surrounding environment, and insert it into the First
Law of Thermodynamics:

Hdi = γi�
drag
i · (v f − vi )

= γi
1

2
ρaCDi ||v f − vi ||(v f − vi )A

D
i · (v f − vi )

= γi
1

2
ρaCDi ||v f − vi ||3AD

i , (20)

where 0 ≤ γi ≤ 1 is the frictional heating efficiency. If one
then includes convective and radiative cooling, this yields

miCi θ̇i = IKi
θsub − θi

||r i − rsub|| A
c
i

︸ ︷︷ ︸
Qi (when in contact)

− hi A
s
i (θi − θs)︸ ︷︷ ︸
Hci

− εiβAs
i (θ

4
i − θ4s )

︸ ︷︷ ︸
Hri

+ γ
1

2
ρaCDi ||v f − vi ||3AD

i
︸ ︷︷ ︸

Hdi

. (21)

Remark To quantify the convection coefficient (h), we con-
sider the Nusselt number (Nu), which is the ratio between
the heat transfer of convection to heat transfer of conduction

Nu
def= hL

IK
⇒ h = NuIK

L
, (22)

where L = 2R is the length scale associated with the particle
radius R and IK is the fluid conductivity. TheNusselt number
is related to the Reynolds number

Re
def= 2ρR||v f − vi ||

μ
, (23)

and Prandtl number

Pr
def= cpμ

IK
, (24)

by (Whitaker [20])

Nu ≈ 2 + (0.4Re1/2 + 0.06Re2/3)Pr0.4
(

μ

μs

)0.25

, (25)

where μ is the surrounding fluid viscosity at the surrounding
andμs is the viscosity of the fluid at the surface temperature.
Thus, once one has the Nusselt number, one can post-process
the convection coefficient.2

2 In the analysis to follow, we assume μ ≈ μs .
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7 Effective properties

In the analysis to follow, the properties of a droplet, which is a
mixture ofmicroheterogeneousmaterials, will be determined
from effective medium theories.

7.1 Effective conductivity

Over the last century, estimates for micro-heterogeneous
materials, of which porous materials is a subclass, have been
developed. A particularly useful set estimates, in fact rigor-
ous bounds are those developed in the early 1960’s byHashin
and Shtrikman [21–23]. For a two phase material, comprised
of isotropic phases with an overall isotropic response, they
specifically read as

IK1 + v2
1

IK2−IK1
+ 1−v2

3IK1︸ ︷︷ ︸
IK ∗,−

≤ IK ∗ ≤ IK2 + 1 − v2
1

IK1−IK2
+ v2

3IK2︸ ︷︷ ︸
IK ∗,+

,

(26)

where the conductivity of phase 2 (with volume fraction v2)
is larger than phase 1 (IK2 ≥ IK1). For the purposes of this
present analysis v2 corresponds to the solid particle material
and phase 1will be considered as the binding “material”. The
volume fractions have to sum to unity:

v1 + v2 = 1 ⇒ v1 = 1 − v2. (27)

TheHashin–Shtrikmanbounds are the tightest boundsknown
when the only information is the volume fraction of the
particles-in other words, no other structural or statistical
information is known.

7.2 Effective density of thematerial

The effective density of a mixture for a two-phase materials
can directly be determined by

ρ∗ def= 〈ρ(x)〉V def= 1

V

∫

V
ρ(x) dV

= 1

V

(∫

V1
ρ1 dV +

∫

V2
ρ2 dV

)
= v1ρ1 + v2ρ2. (28)

Furthermore

(ρC)∗ def= 〈ρ(x)C(x)〉V def= 1

V

∫

V
ρ(x)C(x) dV

= 1

V

(∫

V1
ρ1C1 dV +

∫

V2
ρ2C2 dV

)

= v1ρ1C1 + v2ρ2C2 (29)

The density-oriented calculations are not estimates they are
exact. The effective density of a mixture for a two-phase
materials can directly be determined by

m = ρ∗V = (v1ρ1 + v2ρ2)
4

3
πR3, (30)

where V = 4
3πR3, while the effective thermal mass is

mC = (ρC)∗V = (v1ρ1C1 + v2ρ2C2)
4

3
πR3. (31)

7.3 Effective charge-carrying capacity of the
material

q∗ def= 〈q(x)〉V def= 1

V

∫

V
q(x) dV = 1

V

(∫

V1
q1 dV +

∫

V2
q2 dV

)

= v1〈q1〉V1 + v2〈q2〉V2 . (32)

Depending on the materials under consideration, either the
carrier material and/or the particles could carry a charge.

Remark There exist a large number of effective property esti-
mation techniques, and we refer the reader to Torquato [24],
Jikov et al. [25], Hashin [23], Mura [26], Markov [27] for
theoretical aspects and for more computationally-oriented
approaches, Ghosh [28], Ghosh andDimiduk [29],Matous et
al [30] and Zohdi andWriggers [31], Zohdi [32]. It is impor-
tant to note that direct numerical approaches, discretizing the
entire particle-laden heterogeneous domain with a very fine
mesh, are quite accurate, but inordinately computationally
expensive. If is for this reason that multiscale models are fre-
quently used, which employ less computationally-intensive
effective property models in most of the domain and detailed
microstructural models in critical regions (see Zohdi and
Wriggers [31] for reviews).

8 Integration of the equations

With the governing equations established, one can then inte-
grate Eq. 10 to obtain the velocity for the i th lumped mass
with a simple Forward–Euler integration3

vi (t + �t) = vi (t) + 1

mi

∫ t+�t

t
� tot

i (t) dt ≈ vi (t)

+ �t

mi
� tot

i (t), (33)

and the position for the i th lumped mass by applying the
integration process again:

3 More sophisticated implicit solution methods for strongly interacting
multi-component systems can be found in Zohdi [33,33–44].
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r i (t + �t) ≈ r i (t) + �tvi (t), (34)

which provides an updating scheme for the set equations for
i = 1, 2, 3, ..., Nd lumped masses. For the thermal states

θi (t+�t) = θi (t) + 1

miCi

(∫ t+�t

t
Qi dt +

∫ t+�t

t
Hci dt

+
∫ t+�t

t
Hri dt +

∫ t+�t

t
Hdi dt

)

≈ θi (t) + �t

miCi
(Qi (t) + Hci (t)

+Hri (t) + Hdi (t)) . (35)

8.1 Overall solution algorithm

The algorithm is as follows:

(1) COMPUTE ROBOT SYSTEM POSITION TIME = t :

(2) SET i = 1 :

(3) IF i > Nd THEN GO TO (5)

(4) IF i ≤ Nd THEN : (FOR LUMPED MASS i)

(a) COMPUTE POSITION :r i (t + �t)
(b) COMPUTE TEMPERATURE :θi (t + �t)
(c) GO TO (3) AND NEXT DROP/LUMPED MASS

(i = i + 1)

(5)INCREMENT TIME : t = t + �t

(36)

8.2 Numerical example: fault tolerance vs. no fault
tolerance

Consider the three-link mechanism introduced at the begin-
ning of this paper, with material dispensed from the printer.
The system parameters are shown in Table 1. The material
that exits the printer initially has the temperature and veloc-
ity of the print head. The angular velocities are constant in
this simple example. Ten-thousand time steps were used.
The wall-clock simulation time was on the order of 0.03 s
on a Macbook-Pro using a FORTRAN-90 code written by
the author. The results are shown in Figs. 4, 5 and 6, with and
without the electrical charging. Clearly, with the charge, one
can printwithin the target, despite the inaccuracy of the robot.
The speed at which this type of simulation can be completed
allows one to answer the inverse question of what the combi-
nation of parameters should be for a desired result. In order to
cast the objective mathematically, we set the problem up as a
Machine Learning Algorithm (MLA). Following Zohdi [46],
we formulate the objective as a cost-function minimization
problem whereby a pattern at time t = T = 1s is given by
(Fig. 7)

Table 1 Material parameters used in the example

Parameter Value

Link one angular velocity �̇1 = −10 rad/s

Link two angular velocity �̇2 = −1 rad/s

Link three angular velocity �̇3 = 10 rad/s

Dispensing velocity �vd−e = 1 m/s

Link one L1 = 1m

Link two L2 = 1m

Link three L3 = 0.5m

Surrounding cooling fluid velocity v f = (10, 0, 0) m/s

Surrounding convective cooling
coefficient

h = 100 W/(m2K)

Volume fraction of phases 2 v1 = 0.75 and v2 = 0.25)

Phase 1 mass density ρ1 = 2000 kg/m3

Phase 2 mass density ρ2 = 7000 kg/m3

Temperature of the robot 400 K

Phase 1 heat capacity of the droplet C=1000 J/(kgK)

Phase 2 heat capacity of the droplet C=1000 J/(kgK)

Ambient temperature θo = 325 K

Droplet radius R = 0.001 m

Phase 1 thermal conductivity IK1 = 10W/(mK)

Phase 2 thermal conductivity IK2 = 20W/(mK)

Pixel charge qp = (1 × 10−7, 0) C

Pixel grid 10 × 10 pixels

Per unit volume charge for phase 1 q̂1 = 0 C/m3

Per unit volume charge for phase 2 q̂2 = 1000 C/m3

Radiative efficiency ε = 0.75

• Specifying the desired locations of the drops: rdesi (t),
i = 1, ..., Nd at time t = T ,

• Determining where the drops have been placed by a trial
set of parameter: rgeni (t), i = 1, ..., Nd at time t = T ,

• Determining the difference the desired and generated pat-
terns:


 =
∑Nd

i=1 ||rdesi − rgeni ||
∑Nd

i=1 ||rdesi || , (37)

• Systematically minimize Equation 37, min�
, by vary-

ing the design parameters: �i def= {�i
1,�

i
2,�

i
3,�

i
4, ...,

�i
N } def= {�̇1, �̇2, �̇3,�ve, qp}.

• The systemparameter search is conductedwithin the con-
strained ranges of �̇

(−)
1 ≤ �̇1 ≤ �̇

(+)
1 , �̇

(−)
2 ≤ �̇2 ≤

�̇
(+)
2 , �̇

(−)
3 ≤ �̇3 ≤ �̇

(+)
3 , �ve(−) ≤ �ve ≤ �ve(+)

and q(−)
p ≤ qp ≤ q(+)

p . These upper and lower limits
would, in general, be dictated by what is physically pos-
sible with the machinery and materials available.
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Fig. 4 With fault-tolerance
charging—a deposition pattern:
left to right and top to bottom.
The colors indicate the
temperature. The robot
temperature was 400 K (color
coded orange) while the
substrate was set as 300 K (color
coded dark blue). The total time
was T = 1s and the time slabs
are T = 0, 1/6, 1/3, 1/2, 2/3
and 1s. The robot started at
position �1 = π/2, �2 = 0 and
�3 = 0. (Color figure online)

8.3 System parameter search: Machine Learning
Algorithm (MLA)

Here we follow Zohdi [45,46] in order to minimize Equa-
tion 37, which we will refer to as a “cost function”. Cost
functions such as Eq. 37 are nonconvex in design parameter

space and often nonsmooth. Their minimization is usually
difficult with direct application of gradient methods. This
motivates nonderivative search methods, for example those
found in Machine Learning Algorithms (MLA’s). One of
the most basic subset of MLA’s are so-called Genetic Algo-
rithms (GA’s). Typically, one will use a GA first in order
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Fig. 5 A zoom on the drops
being deposited on the
electrified pattern in Fig. 4

to isolate multiple local minima, and then use a gradient
based algorithm in these locally convex regions or reset the
GA to concentrate its search over these more constrained
regions. GA’s are typically the simplest schemeto start the
analysis, and one can, of course, use more sophisticated
methods if warranted. For a review of GA’s, see the pioneer-
ing work of Holland ([47]), as well as Goldberg [48], Davis
[49], Onwubiko [50], Lagaros et al. [51], Papadrakakis et
al. [52–55] and Goldberg and Deb [56]. The GA approach
is extremely well-suited for nonconvex, nonsmooth, multi-
component, multistage systems, and involves the following
essential concepts:

1. PopulationgenerationGenerate systempopulation:�i def=
{�i

1,�
i
2,�

i
3,�

i
4, ..., �

i
N } = {�̇1, �̇2, �̇3,�ve, qp}i

2. Performance evaluationCompute fitness/performance of
each genetic string: 
(�i ) and rank them (i = 1, ..., N )

3. Mating process Mate pairs/produce offspring: λi
def=

�(I )�i + (1 − �(I ))�i+1 where 0 ≤ � ≤ 1 (Fig. 8
4. Gene elimination Eliminate poorly performing genetic

strings, keep top parents and generated offspring
5. Population regenerationRepeat the process with the new

gene pool and new random genetic strings
6. Solution post-processing Employ gradient-based meth-

ods afterwards in the local “valleys”-if smooth enough

8.3.1 Algorithmic specifics

Following Zohdi [45,46], the algorithm is as follows:

• Step 1 Randomly generate a population of S start-

ing genetic strings, �i , (i = 1, 2, 3, ..., S) : �i def=
{�i

1,�
i
2,�

i
3,�

i
4, ..., �

i
N } def= {�̇1, �̇2, �̇3,�ve, qp}

• Step 2 Compute fitness of each string 
(�i ), (i=1, ...,
S)

• Step 3 Rank genetic strings: �i , (i=1, ..., S)

• Step 4 Mate nearest pairs and produce two offspring,

(i=1, ..., S) λi
def= �(I )�i + (1 − �(I ))�i+1, λi+1 def=

�(I I )�i + (1 − �(I I ))�i+1

• Step 5 Eliminate the bottom M < S strings and keep
top K < N parents and top K offspring (K offspring+K
parents+M=S)

• Step 6 Repeat STEPS 1-6 with top gene pool (K off-
spring and K parents), plus M new, randomly generated,
strings

• Note �(I ) and �(I I ) are random numbers, such that
0 ≤ �(I ) ≤ 1, 0 ≤ �(I I ) ≤ 1, which are different for
each component of each genetic string

• Option Rescale and restart search around best perform-
ing parameter set every few generations

Remark 1 If one selects the mating parameter� to be greater
that one and/or less than zero, one can induce “mutations”.
i.e. characteristics that neither parent possesses. However,
this is somewhat redundant with introduction of new random
members of the population in the current algorithm.

Remark 2 If one does not retain the parents in the algorithm
above, in is possible that inferior performing offspring may
replace superior parents. Thus, top parents should be kept for
the next generation. This guarantees a monotone reduction in
the cost function. Furthermore, retained parents do not need
to be re-evaluated-making the algorithm less computation-
ally less expensive, since these parameter sets do not have
to be reevaluated (or ranked) in the next generation. Numer-
ous studies of the author have shown that advantages parent
retention outweighs inbreeding, for sufficiently large popu-
lation sizes. Finally, we remark that this algorithm is easily
parallelizable.

8.4 MLA electrodynamic example

As a model problem, we used the result of the previous
numerical example that generated the results and pattern in
Fig. 4 using
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Fig. 6 Without fault-tolerance
charging: a deposition pattern:
left to right and top to bottom.
The colors indicate the
temperature. The robot
temperature was 400 K (color
coded orange) while the
substrate was set as 300 K (color
coded dark blue). The total time
was T = 1s and the time slabs
are T = 0, 1/6, 1/3, 1/2, 2/3
and 1s. The robot started at
position �1 = π/2, �2 = 0 and
�3 = 0. (Color figure online)

• �̇1 = −10 rad/s,
• �̇2 = −1 rad/s,
• �̇3 = 10 rad/s,
• �vd = 1 m/s and
• qp = 10−7 C.

We used the following MLA settings:

• Number of design variables: 5,

• Search domain for �̇1: �̇
−
1 = −5 ≤ �̇1 ≤ −30 = �̇+

1 ,
• Search domain for �̇2: �̇

−
2 = −0.5 ≤ �̇2 ≤ −3 = �̇+

2 ,
• Search domain for �̇3: �̇

−
3 = 5 ≤ �̇3 ≤ 30 = �̇+

3 ,
• Search domain for �vd : �ve,− = 0.5 ≤ �vd ≤ 3.5 =

�ve,+,
• Search domain for qp: q−

p = 0 ≤ qp ≤ 3× 10−7 = q+
p ,

• Population size per generation: 20,
• Number of parents to keep in each generation: 4,
• Number of children created in each generation: 4,
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Fig. 7 Machine Learning
Algorithm model problem of a
robot with a dispensing printer
head
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Fig. 8 The basic action of a genetic algorithm

• Number of completely new genes created in each gener-
ation: 12 and

• Number of generations: 200.

The algorithm was automatically reset every 30 generations.
The entire 200 generation simulation, with 20 genes per eval-
uation (8000 total designs) took on the order of 5 minutes of
a laptop, making it ideal as a design tool. Figure 9 (average
top four genes performance and top gene performance) and
Table 2 (values of the gene components) illustrate the results.
The MLA/GA is able to home in of a variety of possible
designs, including the one corresponding to the original set
of parameters that generated the test pattern and alternatives
that achieve virtually the same results. This allows system
designers to more flexibility in parameter selection. We note
that, for a given set of parameters, a complete simulation
takes on the order of 0.03 s, thus over 100,000 parameter
sets can be evaluated in an hour, without even exploiting the
inherent parallelism of theMLA.Formore detailedmicrome-
chanical information on the behavior of the optimal result,
Discrete Element Methods (DEM) are needed, and are dis-
cussed in the summary of this paper.

Fig. 9 Left-using the objective function (
). Machine learning output,
generation after generation. Shown are the best performing gene (design
parameter set, in red) as a function of successive generations, as well
as the average performance of the population of the top four genes
(designs, in green). (Color figure online)

8.5 Extensions

In addition to the obvious use for industrial additive man-
ufacturing processes, application of the methodology to the
3D bioprinting of flowing media containing cells is quite rel-
evant. Over the last decade, there has been a steady increase
in so-called bioprinting technology, whereby cells are com-
bined with fluids containing nutrients, growth factors, etc,
to make what is called a bioink. The slurry of material is
then loaded into a 3D bioprinter that deposits the mixture,
layer by layer onto a surface to build tissue-like structures,
ligaments, cartilage, organs, for example on scaffolds or to
make scaffolds. The liquid that the cells are immersed into
provide the nutrients for the cells to remain alive. In some
cases, the cells are encapsulated in a spherical shell within
the fluid in order to keep the cells healthy. The field is rela-
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Table 2 The top 10 system
parameter performers

Design �̇1 �̇2 �̇3 �ve qp 


1 −5.94 −0.79 12.20 1.13 0.0000001285 0.0077391595

2 −8.48 −0.62 12.23 1.59 0.0000001169 0.0077464996

3 −9.13 −0.61 12.62 1.28 0.0000001214 0.0077469398

4 −7.91 −0.77 8.47 1.57 0.0000001237 0.0077470045

5 −9.06 −0.54 8.12 1.36 0.0000001122 0.0371113337

6 −8.47 −0.75 7.97 1.53 0.0000001310 0.0403717650

7 −8.50 −0.81 7.78 1.27 0.0000001207 0.0414568277

8 −9.00 −0.55 10.80 1.46 0.0000001462 0.0455584033

9 −8.37 −0.75 7.82 1.24 0.0000001463 0.0462887025

10 −8.74 −0.68 10.53 1.28 0.0000001227 0.0560576224

tively wide now (see [57–67]), but still has a common theme:
the attempted deposition of a particle-embedded slurry. Some
emerging variants of this technology have attempted to utilize
electromagnetic fields. For example, magnetic 3D bioprint-
ing attaches biocompatible magnetic nanoparticles to cells in
order tomagnetize them.Thereafter, the cells canbeprecisely
and rapidly deposited onto patterns following the electro-
magnetic fields (see [68–76]). In this case, only a magnetic
field is needed, since the cells are rendered magnetically
sensitive due to added surfactants.Wenote that intrinsicmag-
netic (non-electromagnetic) forces can be approximated by
a simple model, �mag = ∇(m · Bext ) = ∇(γ Bext · Bext )

(independently of the Lorentz forces), where γ is a material
parameter that is related to the magnetization (m; magnetic
dipole properties, susceptibility, permeability, moment den-
sity, etc.) of the element (see Feynman et al. [77], Cullity
and Graham [78], Boyer [79] or Jackson [17]). Thus, for a
spatially varying magnetic field we have

�mag = ∇(γ Bext · Bext ) = γ∇(Bext · Bext )

= 2γ (∇Bext ) · Bext , (38)

or explicitly

�mag = 2γ (∇Bext ) · Bext = 2γ

⎡

⎢
⎣

∂B1
∂x1

∂B1
∂x2

∂B1
∂x3

∂B2
∂x1

∂B2
∂x2

∂B2
∂x3

∂B3
∂x1

∂B3
∂x2

∂B3
∂x3

⎤

⎥
⎦

ext ⎧
⎨

⎩

B1
B2
B3

⎫
⎬

⎭

ext

,

(39)

In this case, we could construct the following additional
genetic string

�mag =
{

∂B1

∂x1
,
∂B1

∂x2
,
∂B1

∂x3
,
∂B2

∂x1
,
∂B2

∂x2
,
∂B2

∂x3
,
∂B3

∂x1
,
∂B3

∂x2
,
∂B3

∂x3

}
,

(40)

which would generalize the one used previously to read

� = {�̇1, �̇2, �̇3,�vd , Eext , Bext ,∇Bext }, (41)

explicitly,

� =
{
�̇1, �̇2, �̇3,�vd , Eext

1 , Eext
2 , Eext

3 , Bext
1 , Bext

2 , Bext
3 ,

∂B1

∂x1
,
∂B1

∂x2
,
∂B1

∂x3
,
∂B2

∂x1
,
∂B2

∂x2
,
∂B2

∂x3
,
∂B3

∂x1
,
∂B3

∂x2
,
∂B3

∂x3

}
. (42)

9 Summary and extensions

As outlined in this paper, free-form printing of particle-
functionalized materials consist of attaching a dispenser
to a robot arm, which then releases the mixture in free-
space. These approaches are becoming popular because they
utilize widely-available highly-programmable robots. How-
ever, often the release of a complex mixture in free-space
is somewhat imprecise, thus electrical field control has been
proposed as one possible remedy to enhance the precision of
such processes. Specifically, enhanced control of the mate-
rial is achieved by electrifying the released material in the
presence of a prescribed ambient electrical field, in order
to guide it to the desired position. There are many com-
ponents that comprise such a system, thus motivating the
construction of a simulation tool framework assembling sub-
models of (1) The kinematics of the robot arm and the
dispenser-printer head, (2) The electrical and gravitational
forces on the released material, (3) The dynamics of the
released material and (4) The conductive, convective and
radiative cooling of the media. The modular system struc-
ture allows for easy replacement of submodels within the
overall framework. Afterwards, a Machine Learning Algo-
rithm (MLA) was developed to identify and optimize the
proper system parameters which deliver a desired printed
pattern. Had the particle noninteraction approximation not
been invoked, a coupled system of equations would arise
due to the interaction between the constituents that comprise
the released material. This leads to a coupled set of equa-
tions. In order to illustrate how such material system are
modeled, following Zohdi [15,33–44], we consider a collec-
tion of Np non-intersecting particles (which comprise the
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microconstituents in the material in the droplets), which are
assumed to be spherical in shape. It is also assumed that the
particles are small enough that their rotation with respect to
their mass center minimally affects their overall motion (this
is discussed further shortly). For an arbitrary i th particle in
the system, acted upon by (Zohdi [15,33–44])

1. �con
i : inter-particle contact forces,

2. �bond
i : inter-particle adhesive bonding forces,

3. �ext
i : inter-particle near-field and external forces and

4. �
drag
i : particle drag forces from any surrounding gas,

the dynamics are governed by

mi r̈ i =�con
i +�bond

i +�ext
i +�

drag
i

def= � tot
i (r1, r2, ..., rNp ),

(43)

where r i is the position vector of the i th particle and � tot
i is

the total of the forces acting on the i th particlewith analogous
equations for the heat-transfer. For example, the heat trans-
fer of each particle i = 1, 2, ..., Np , miCi θ̇i = Qi + Hi ,
where Qi represents the conductive contribution from sur-
rounding particles in contact (including the substrate), and
Hi represents the external heating terms. Complex, coupled,
particle systems such as the above can be efficiently solved
in a staggered manner by (at a given time increment): (1)
solving each field equation individually, “freezing” the other
(coupled) fields in the system, allowing only the primary field
to be active and (2) updating the primary field variable after
the solution of each field equation. The next field equation
is treated in a similar manner where, as the physics changes,
the field that is most sensitive (exhibits the largest amount
of relative nondimensional change) dictates the time-step
size. This is an implicit, staggered, adaptive time-stepping
scheme. Such approaches have a long history in the computa-
tional mechanics community (see, for example, Zienkiewicz
[80], Zienkiewicz et al. [81], Lewis et al. [82], Lewis and
Schrefler [83], Park and Felippa [84], Farhat at al [85], Farhat
and Lesoinne [86], Farhat et al. [87], Piperno [88], Piperno et
al. [89], Piperno and Farhat [90] andMichopoulos et al. [91],
Lesoinne and Farhat [92] and Le Tallec and Muoro [93]. In
Zohdi [15,33–44] this process proceeds by first solving for
the particle positions, assuming the thermal fields fixed (cast
in an abstract operator setting for clarity):

A1(rL+1,K , θ L+1,K−1) = F1(rL+1,K−1, θ L+1,K−1), (44)

and then solving for the thermal fields, assuming the particle
positions fixed:

A2(rL+1,K , θ L+1,K ) = F2(rL+1,K , θ L+1,K−1), (45)

where only the underlined variable is “active”, L indicates
the time step and K indicates the iteration counter. Within
the staggering scheme, implicit time-stepping methods, with
time step size adaptivity can be used, which are dictated by
controlling the normalized errors within each time step for
the dynamical and thermodynamic fields,

�r K
def= ||rL+1,K −rL+1,K−1||

||rL+1,K − rL || and

�θK
def= ||θ L+1,K −θ L+1,K−1||

||θ L+1,K − θ L || . (46)

Details are provided in the Zohdi [15,33–44]. However, the
essentials are that an“overlap” (contact) model is used to
determine the normal contact forces between particles, where
for the i th particle in contact with Nci particles, a total con-
tact force of �

con,n
i = ∑Nci

j=1 ψ
con,n
i j is produced, where the

forces are dictated by the separation distance between the
particle centers for the particle in contact, written generally
as �

con,n
i j = F(||r i − r j ||, Ri , R j ,material properties),

Ri and R j being the radii of the i th and j th particles in con-
tact. Although including particle rotations is questionable
for extremely small powders (idealized as spherical parti-
cles), for completeness, Zohdi [15] illustrated the inclusion of
rotational equations of motion (a balance of angular momen-
tum), which augment a balance of linear momentum,mi v̇i =
� tot

i , vi being the center of mass velocity. The balance of

angular momentum reads as Ḣ i,cm = d(I i ·ωi )
dt = M tot

i,cm ,

where, for spheres, we have H i,cm = I i,sωi = 2
5mi R2

i ωi ,
where the total moment, M tot

i,cm , is due to interaction forces,
contact forces and rolling resistance. Additionally, in such
simulations, the electromagnetic forces are decomposed
into three parts: (1) Lorentz forces (for charged particles),
(2) inter-particle near-field forces and (3) magnetic forces
(for magnetic particles). There exist a large number of
empirical near-field relations that generally fall under the
subject matter of the large field of Molecular Dynamics
(MD), and we refer readers to Frenklach and Carmer [94],
Haile [95], Hase [96], Schlick [19] and Rapaport [97],
where Lennard–Jones, Mie andMorse potentials (Moelwyn-
Hughes [99]) are usually employed, with various exten-
sions such as Tersoff [100] additions and three-body terms
(Stillinger [101]).

An example of the level of detail that one can extract from
such a process is given in Figs. 10 and 11, using param-
eters found in Zohdi [15]. The initial stream of particles
breaks into two aggregate drops. The aggregate drop that
is closer to the electrified target (with electric field given by
Equation 13) becomes attracted first, followed by the second
drop that connects and recombines with the other to form a
final deposition upon the target, which would eventually cool
down. In such simulations, implementation of particle inter-
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Fig. 10 A sequence of frames of the dynamics of stream of charged
particles initially released from a dispenser near an electrified target is
shown. The colors indicate the temperature of the materials (red=400
K and dark blue=300 K). The initial stream of particles breaks into two

aggregate drops. The aggregate drop that is closer to the charged target
becomes attracted first, followed by the second drop that connects and
melds with the other to form a final deposition onto the target. (Color
figure online)

action lists are key to speed-up calculations. This allows for
efficient extension to very large particle systems. For each
particle, these approaches proceed by determining neighbor-
ing particleswithin a radius of influence, and using only those
particles for the particle in question. The list is then updated
periodically during the simulations, and dramatically reduces
the contact search computation (O(N 2

p) complexity, where
Np are the number of particles in the system), as well as other
intra-particle operations. In the simulation results presented
in Figs. 10 and 11, a nearest-neighbor list was constructed
at the beginning of the simulation and for a subinterval of
time, the interaction for each particle was restricted to these
neighbors. Thereafter, the lists were updated after that inter-
val expired and the process was repeated. We refer the reader

to Zohdi [40–44] and Zohdi [15] for details. The use of such
methods with the introduced MLA is under current investi-
gation by the author.

However, one issue is that higher fidelity models are
computationally more expensive, relative to the model used
in the first part of this paper. Thus, in may be advanta-
geous to utilize Neural Network-type paradigms which are
based on constructing simple input-output type models that
are, essentially, adaptive nonlinear regressions of the form
OUT PUT = B(I N PUT ,W1,W2, ...WN ) where B is an
Artificial Neural Network (ANN, Fig. 12) constructed from:

• Synapses, which multiply inputs by weights that repre-
sent the inputs’ relevance to the desired output,

123



Computational Mechanics

Fig. 11 A zoom on the material deposition onto an electrified target is
shown. As indicated before, the initial stream of particles breaks into
two aggregate drops. The aggregate drop that is closer to the charged
target becomes attracted first, followed by the second drop that connects
and melds with the other to form a final deposition onto the target
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Fig. 12 A schematic of a neural net for the system considered in this
paper

• Neurons, which add outputs from all incoming synapses
and applies activation functions and

• Training, which recalibrates the weights to achieve a
desired overall output.

Ultimately, one constructs a system with optimized weights
to mimic an artificial “input-output” brain. For physically-
complex systems, these techniques remain unproven, but are

actively being investigated in a number of scientific fields.
Their robust usefulness in the domain of multistage additive
manufacturing processes is an open question that is under
current investigation by the author.
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