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Abstract Electrical high voltage (HV) machines are prone
to corona discharges leading to power losses as well as dam-
age of the insulating layer. Many different techniques are
applied as corona protection and computational methods aid
to select the best design. In this paper we develop a reduced-
order model in 1D estimating electric field and temperature
distribution of a conductor wrapped with different layers,
as usual for HV-machines. Many assumptions and simpli-
fications are undertaken for this 1D model, therefore, we
compare its results to a direct numerical simulation in 3D
quantitatively. Both models are transient and nonlinear, giv-
ing a possibility to quickly estimate in 1D or fully compute
in 3D by a computational cost. Such tools enable understand-
ing, evaluation, and optimization of corona shielding systems
for multilayered coils.

Keywords Finite element · Electromagnetism · Corona
protection · Temperature · Reduced order model

1 Introduction

With the invention of power transformer in 1880s, the feasi-
bility of power transmission was greatly increased. Growing
demand in electric power motivates researchers for fur-
ther optimization in power transmission. High voltage (HV)
machines generate electric current transported in specially
designed cables as alternate current (AC) or direct current
(DC). These HVAC or HVDC transmission mediums have
several inefficiencies leading to losses and leakage, which
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imply an active research and development, see [8,21,23].
Two important issues for HVAC as well HVDC are: high
amount of heat produced by the electric current and power
loss due to a corona discharge. These phenomena are also
related to each other, since the produced heat increases
the temperature of the surrounding air, which enhances the
ionization leading to corona. The cables are insulated, for
example with resin like polypropylene or with a high-dense
Kraft paper, and along the surface of this insulation the
electric potential varies. If the potential gradient exceeds a
material specific threshold value, coronas break down the
surface of insulating layer. Therefore, an extra layer is used
as corona protection by equalizing the potential gradient.

Coronaprotection is realizedbyusing apartially-insulating
layer wrapped around the insulating layer surrounding the
conducting core (copper). Silicon carbide filled resin or
inorganic fiber reinforced composite material is used as a
semiconductor around the insulator, see [7,17,18] and the
references in [34]. Such a material is more efficient as a ther-
mal conductor and also its electrical resistivity increases with
an increasing applied electric field (voltage stress), E. This
corona protection layer can be applied as a lacquer (paint,
spray) or tape (band). As outer corona protection or shield-
ing (OCP or OCS), a slightly different coating is used than as
end corona protection or shielding (ECP or ECS) along the
wire. These different materials used for corona protection are
called stress gradingmaterials—we use the wording electric
field instead of voltage stress. Such materials are semicon-
ductors; hence, the resistivity depends on temperature aswell
as on electric field, see [11,31].

Different proposals have been used for simulating the sys-
tem response of power transmission. Maxwell’s equations
coupled with the balance of energy need to be solved in order
to obtain distribution of electromagnetic fields and temper-
ature in the system. With system specific assumptions and
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Fig. 1 Power transmission cable model, copper as core (orange), resin
as insulator (gray), OCP (green), and ECP (blue). (Color figure online)

simplifications, numerical solutions are presented by several
researchers, see [12,13,25–30].

In this work we propose an efficient reduced-order model
in 1Dand test its accuracybyusing a transient solutionof cou-
pled field equations based on finite element method (FEM) in
3D. As a model we use 10 cm×3cm copper block of 50cm
length, covered with a resin of 1cm thickness. We decom-
pose it into 3 sections of 10-30-10cm and use at first and
second sections OCP and at first section ECP, both 0.5cm of
thickness. All corners are filled with 0.5cm of radius. The
geometry can be depicted in Fig. 1.

2 Field equations for 1D model problem

The continuum body is modeled as a rigid, unpolarized, and
conductive system. Therefore, we need to solve two coupled
field equations for computing the electric potential V and
the temperature θ . We explain for the one-dimensional sys-

tem under consideration, a simple but reliable semi-analytic
method in order to determine V and θ quickly.

2.1 Current flow

Signal propagation is fast with respect to the motion of elec-
tric charge. Hence it is appropriate to assume that at the time

an electric charge enters a control volume, another electric
charge leaves the control volume such that the total amount
of charge remains conserved. It reads

+(J A)− − (J A)+ = 0 (1)

along Δx and if Δx → 0, by using Ohm’s law, J = σ E , we
obtain

d(J A)

dx
= d(σ E A)

dx
= 0 , (2)

where A(x) is the cross-sectional area, which changes sec-
tion by section as seen in Fig. 1. The flow of current can be
rewritten by using, E = −dV/dx as follows

d(J A)

dx
= d(σ E A)

dx
= − d

dx

(
σ
dV

dx
A
)

= 0 , (3)

where the voltage is controlled at the ends V (x = 0) = V0
and V (x = L) = VL . Hence Eq.3 is solved as

σ
dV

dx
A = c1 ,

V − V0 = c1

∫ x

0

dx̄

σ(x̄, t)A(x̄)
,

V (x, t) = V0 + VL − V0∫ L

0

dx̄

σ(x̄, t)A(x̄)

∫ x

0

dx̄

σ(x̄, t)A(x̄)
. (4)

We can simply evaluate for every x by providing the con-
ductivity σ as well as the cross-sectional area A for every
section. Concretely, for a beam of 3 sections with lengths L I,
L II, L III, such that L = L I + L II + L III we have

∫ L

0

dx̄

σ(x̄, t)A(x̄)
= L I

σ IAI + L II

σ IIAII + L III

σ IIIAIII ,

∫ x

0

dx̄

σ(x̄, t)A(x̄)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x

σ IAI if x < L I

L I

σ IAI + x − L I

σ IIAII if x ≥ L I and x < L I + L II

L I

σ IAI + L II

σ IIAII + x − (L I + L II)

σ IIIAIII if x ≥ L I + L II

(5)

Every section consists of different layers. The copper core is
framed with different layers such as insulator, ECP, OCP. For
a sectionα ∈ {I, II, III} suppose there aren ∈ {1, 2, 3, 4, . . . }
layers of different materials. Every layer has an electrical
conductivity σn and a corresponding cross-section area An .
Since the electric field is assumed uniform at each cross-
section (at a fixed location x), the electric current area density,
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σ(x, t)E , over the whole cross-section reads

1

A(x)

∫

A(x)
J dA = 1

A(x)

n∑
i=1

Ji Ai = 1

A(x)

n∑
i=1

σi E Ai .

(6)

Thus, we obtain

σ(x, t) = 1

A(x)

n∑
i=1

σi Ai . (7)

The effective conductivity of a cross-section is the sum of
the individual conductivities multiplied by their share of the
cross-sectional area. In each section we have

σα = 1

Aα

n∑
i=1

σα
i Aα

i , Aα =
n∑

i=1

Aα
i . (8)

In each section, the number of layers may vary, n = n(α),
which we have omitted in the notation for the sake of brevity.

2.2 Temperature evolution

Analogously,we use the energy conservationwithin a control
volume

ρc
∂θ

∂t
ΔV = +(q A)− − (q A)+ + aJ EΔV , (9)

where the volume is ΔV = AΔx , c denotes the (constant
in each section) specific heat capacity, q = −κ∂θ/∂x is the
heat flux, and a system specific parameter a models possible
losses from the control volume, we set a = 1. Dividing both
sides by ρcΔV yields

∂θ

∂t
= 1

ρc

∂

∂x

(
κ

∂θ

∂x

)
+ J E

ρc︸ ︷︷ ︸
F(x, t)

. (10)

Approximating the time derivative of θ at x and t as

∂θ

∂t
≈ θ(x, t + Δt) − θ(x, t)

Δt
(11)

we obtain

θ(x, t + Δt) = θ(x, t) + ΔtF(x, t) . (12)

For the derivative term inside of F, we approximate

∂

∂x

(
κ

∂θ

∂x

)
= ∂

∂x

(
κ(x)

Δx

(
θ
(
x + Δx

2

)
− θ

(
x − Δx

2

)))

= 1

(Δx)2

(
κ
(
x + Δx

2

)(
θ(x + Δx) − θ(x)

)

− κ
(
x − Δx

2

)(
θ(x) − θ(x − Δx)

))
. (13)

2.3 Algorithm

The solution algorithm for the reduced-order model works
in 1D. The geometry consists of different parts (layers) such
as copper, resin, ECP, and OCP. These layers have different
material properties used for calculating the effective con-
ductivity. In the 1D model we compute electric potential and
temperature onlywithin the copper core; however,we present
the results on a 3Dmesh for the sake of a better visualization.

A line mesh is generated and along that line the electric
potential is computed with Eq. (4) by using the temperature
field from the last time step. Since we have neglected polar-
ization, the electric potential is identical for different layers.
Therefore, we can solve for the whole body with one reduced
1Dmodel. After the computation of the electric potential, the
temperature distribution is computed with Eq. (12) by using
the current electric potential. Since Joule’s heat depends on
the material coefficient (electrical conductivity), for each of
the layer we need to determine the temperature separately
as another 1D model. So in each time step we follow the
steps:

– Compute the electric potential V along x by using the
temperature from the last time step θ0 (or initial condi-
tion),

– Compute J and E with the current value of σ in each
layer,

– Compute θ(x, t + Δt) at each node in system,
– Compute σ ∗(x, t + Δt), go to the next time step and

repeat.

We solve two 1D equations: one for electric potential and
another for temperature. Then we derive electric field and
electric current from the solution and combine them in a 3D
mesh for a better visualization. The computation is fast; but
it may be error prone effected by the various assumptions.
First,we assume rigid bodies andneglect dielectric properties
of the materials (no polarization). Second, we use a weak
coupling in the sense that the temperature and the electric
field affect each other with a delay of one time step. Third,
we neglect the magnetic potential completely. Fourth, the
heat flux is only along x1 and we ignore a heat exchange with
the environment (no losses). These assumptionsmight lead to
inaccuracies. In order to estimate the accuracy of this reduced
model, we implement a direct numerical computation in 3D
and compare the results of 1D to the results in 3D.
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3 Direct numerical FEM calculations

Consider a rigid, polarized continuum body, within which
we want to compute the electric potential φ, the magnetic
potential A, and the temperature T as a function in space
x and in time t . We call the list unknowns {φ, A, T } as the
primitive variables. The solution of primitive variables has
to fulfill the governing equations motivated by balance equa-
tions. We very briefly sum up this motivation and present
the governing equations, for details we refer to [2, Chap. 3].
All fields are expressed in Cartesian coordinates, we apply
Einstein’s summation convention over repeated indices, and
we understand a derivative with respect to xi by the comma
notation (·),i as a lower index.

The continuum body has an electric charge composed of
free and bound charges. Their characteristics differ since the
free charges move in macroscopic distances, whereas the
bound charges displace in microscopic lengths.We start with
the balance of electric charge as well as balance of magnetic
flux such that four Maxwell equations are derived. Two of
them can be solved by means of the following ansatz func-
tions

Ei = −φ,i − ∂Ai

∂t
, Bi = εi jk Ak, j , (14)

between electromagnetic fields Ei , Bi and electromagnetic
potentials φ, Ai up to an arbitrary gauge—because of numer-
ical reasons,we apply theLorenz gauge.By startingwith the
balance of electric charge and inserting Maxwell’s equa-
tions, we obtain

∂Di,i

∂t
+

(
J fr.i + εi jkMk, j

)
,i

= 0 , (15)

where the charge potentialDi (also called the dielectric dis-
placement) is created by the free electric charges, J fr.i denotes
the electric current due to the motion of the free electric
charges, εi jk is the Levi- Civita symbol being equal to the
permutation symbol in Cartesian coordinates, and the mag-
netic polarization Mi is the magnetization effected by the
bound electric charges. In the case of a rigid body, for Di ,
J fr.i , and Mi we apply following constitutive equations:

Di = Di + Pi , Di = ε0Ei , Pi = ε0χ
el.Ei ,

J fr.i = σπT,i + σ Ei , Mi = χmag.

μ0(1 + χmag.)
Bi , (16)

giving the connection to the electric field Ei , the magnetic
flux Bi , and the temperature T by means of the universal
constants ε0 and μ0, as well as the material specific coeffi-
cients, namely the electrical conductivity σ , thermoelectric
or Peltier’s constantπ , electric susceptibilityχel., andmag-
netic susceptibility χmag.. Electric polarization Pi is due to

the bound electric charges. Herein we neglect the magneto-
electric effect such that electric polarization depends only on
the electric field, analogously,magnetic polarization depends
only on themagnetic flux. For computing themagnetic poten-
tial, Ai , we utilize Maxwell’s equation and after inserting
the Lorenz gauge, we acquire

ε0
∂2Ai

∂t2
− 1

μ0
Ai, j j = J fr.i + ∂Pi

∂t
+ εi jkMk, j . (17)

For computing the temperature T , we use the balance of
entropy

ρ
∂η

∂t
+ Φi,i − ρ

r

T
= Σ , (18)

where the supply term r vanishes in our application, the spe-
cific (per mass) entropy η and its flux Φi as constitutive
equations and the production term Σ read

η = c ln
( T

Tref.

)
, Φi = qi

T
, qi = −κT,i + σπT Ei ,

Σ = − qi
T 2 T,i + 1

T
Ei J

fr.
i , (19)

for rigid, polarized, thermal bodies under the assumption
that irreversible polarization effects (such as hysteresis)
are neglected. The additional material coefficients—specific
heat capacity c, thermal conductivity κ—need to be deter-
mined for every different material by means of experiments.

The governing Eqs. (15), (17), (18) are coupled and non-
linear. In order to solve them we use finite element method
in space and finite difference method in time. For the
space discretization we follow the standard variational for-
mulation, namely multiply the governing equations with
appropriate test functions and integrate by parts for weak-
ening the continuity condition. The 5 primitive variables
p = {φ, A1, A2, A3, T } are approximated as a classCn func-
tion in 5-dimensional Hilbert space,

V =
{
p ∈ [Hn(Ω)]5 : p

∣∣
∂Ω

= given
}

, (20)

where the differentiability properties are included such that
it is a Sobolev space. For the sake of simplicity, we omit to
emphasize the discrete representations of the analytic func-
tions and use the same symbols henceforth. Furthermore,
we use the Galerkin approach and choose test functions
from the same space as the primitive variables, whereas the
test functions vanish on the Dirichlet boundaries. For the
time discretization,we choose theEuler backwards schema.
After space and time discretization, we acquire the following
weak forms:

Fφ =
∫

Ω

(
−(Di − D0

i )δφ,i − Δt J fr.i δφ,i −Δtεi jkMk, j δφ,i

)
dv
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+
∫

∂Ω
niΔtεi jk�Mk, j �δφda,

FA =
∫

Ω

(
ε0

Ai − 2A0i + A00

Δt2
δAi + 1

μ0
Ai, j δAi, j − J fr.i δAi

− Pi − P0
i

Δt
δAi + εi jkMkδAi, j

)
dv,

FT =
∫

Ω

(
ρ(η − η0)δT−ΔtΦi δT,i − Δtρ

r

T
δT−ΔtΣδT

)
dv

+
∫

∂Ω
Δt�Φi �δTnida. (21)

We solve in discrete time steps. Termswith an upper index
of zero, (·)0, denote the numerical values from the last time
step. The jump brackets, �(·)�, indicate the difference on a
surface between the values determined by the shape func-
tions of adjacent (neighboring) finite elements. The solution
fields, namely φ, Ai , and T are continuous over the element
boundaries; however, the constitutive equations may have
jumps across the interface between two different materials.
We already applied the well-known jump conditions over
the element boundaries by assuming that no surface charges
and currents are existing and assuming that the electric cur-
rent is continuous (along the normal direction ni ), see [4] for
details. Assembly over the whole domain give the nonlinear
and coupled weak form

Form = Fφ + FA + FT , (22)

which is solved after an automatic linearization at the partial
differential level by using the novel collection of packages
developed under the FEniCS project [16,20]. It is important
to distinguish the method used herein from the rich literature
for computation of electromagnetism. We use standard finite
elements of order one, which is not used for electromag-
netism. Starting with [24] and [22], solution of Maxwell’s
equation are obtained by using mixed elements, for differ-
ent proposals and implementations, see [6,9], [10, Sect. 17],
[14,19]. Nowadays, there exist several element types, see [5].
Roughly, the overall idea relies on solving electromagnetic
fields, Ei and Bi , by satisfying all Maxwell equations. Of
course, this strategy is fine; however, by using electromag-
netic potentials, φ and Ai , it is possible to solve the system
by means of standard finite elements, as presented in [2,
Chap. 3], [3,4] with various examples. We use the same ele-
ment type, namely P1 continuous Lagrange elements of
order one for each primitive variable.

4 Material properties

As electrical conductor, nearly always, copper is used, which
is a homogeneous and isotropic material at least in the mil-
limeter length-scale. The copper core is surrounded by an

insulator in order to avoid arcing. A polymeric type of resin
will be modeled. ECP and OCP are particle-functionalized
or fiber reinforced composite materials. Owing to the nature
of composite character, we need to introduce estimates on
the material properties. For every constitutive equation for
OCP and ECP, we use “effective” material constants

〈Pi 〉Ω = ε0χ
∗
el.〈Ei 〉Ω ,

〈Mi 〉Ω = χmag.

μ0(1 + χ∗
mag.)

〈Bi 〉Ω ,

〈J fr.i 〉Ω = −σ ∗π∗〈T,i 〉Ω + σ ∗〈Ei 〉Ω ,

〈qi 〉Ω = −κ∗〈T,i 〉Ω + σ ∗π∗〈T 〉Ω 〈Ei 〉Ω , (23)

where (·)∗ is the effective material parameter of the com-
posite material, 〈·〉Ω is the volume averaged field with the
averaging operator:

〈·〉Ω def= 1

|Ω|
∫

Ω

(·)dΩ (24)

over a statistically representative volume element with
domain Ω . In the following we briefly present how to esti-
mate the effective parameters based on [32,33].

4.1 Determining the effective material parameters

In order to make estimates of the overall properties of
the composite, we consider the widely used Hashin–
Shtrikman bounds for isotropic materials with isotropic
effective responses. These estimates provide one with upper
and lower bounds on the overall response of the material. For
two isotropicmaterials with an overall isotropic response, we
utilize the following estimates:

σ1 + v2
1

σ2−σ1
+ 1−v2

3σ1︸ ︷︷ ︸
σ ∗,−

≤ σ ∗ ≤ σ2 + 1 − v2
1

σ1−σ2
+ v2

3σ2︸ ︷︷ ︸
σ ∗,+

, (25)

where the conductivity of phase 2 (with volume fraction v2) is
larger than phase 1 (σ2 ≥ σ1). Usually, v2 corresponds to the
particle material, although there can be applications where
the matrix is more conductive than the particles. In that case,
v2 would correspond to the matrix material. Provided that
the volume fractions and constituent conductivities are the
only known information about themicrostructure, the expres-
sions are the tightest bounds for the overall isotropic effective
responses for two phase media, where the constituents are
both isotropic. A critical observation is that the lower bound
is more accurate when the material is composed of high con-
ductivity particles that are surrounded by a low conductivity
matrix (denoted case 1) and the upper bound ismore accurate
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for a high conductivity matrix surrounding low conductivity
particles (denoted case 2).

This can be explained by considering two cases ofmaterial
combinations, one with 50% low conductivity material and
50% high conductivity material. A material with a continu-
ous low conductivity (fine-scale powder) binder (50%) will
isolate the high conductivity particles ((50%), and the overall
system will not conduct electricity well (this is case 1 and
the lower bound is more accurate), while a material formed
by a continuous high conductivity (fine-scale powder) binder
(50%) surrounding low conductivity particles (50%, case 2)
will, in an overall sense, conduct electricity better than case
1. Thus, case 2 is more closely approximated by the upper
bound and case 1 is closer to the lower bound. Since the true
effective property lies between the upper and lower bounds,
one can construct the following approximation

σ ∗ ≈ Ψ σ ∗,+ + (1 − Ψ )σ ∗,−, (26)

where 0 ≤ Ψ ≤ 1 depends on themicrostructure andmust be
calibrated. For high conductivity spherical particles, at low
volume fractions, under 15%, where the particles are not in
contact, the lower bound is more accurate. Thus, one would
pick Ψ = Ψ s ≤ 0.5 to bias the estimate to the lower bound.
However, using the same setup but replacing the spherical
particles with flakes, there is a greater likelihood of connect-
ing flakes, thus producing high-conductivity pathways. Their
overall conductivity will be higher than those of sphere at the
same volume fraction. Thus, onewould pickΨ = Ψ f > Ψ s .
One can calibrateΨ by comparing it to different experiments
as already done in [35]. Essentially, more particle interaction
makes the upper bound more relevant. The general trends are
(a) for cases where the upper bound is more accurate,Ψ > 1

2
and (b) for cases when the lower bound is more accurate,
Ψ < 1

2 . The parameter Ψ indicates the degree of interac-
tion of the particulate constituents. Analogously, the thermal
conductivity has the following bounds

κ1 + v2
1

κ2−κ1
+ 1−v2

3κ1︸ ︷︷ ︸
κ∗,−

≤ κ∗ ≤ κ2 + 1 − v2
1

κ1−κ2
+ v2

3κ2︸ ︷︷ ︸
κ∗,+

. (27)

such that the effective parameter reads

κ∗ ≈ Ψ κ∗,+ + (1 − Ψ )κ∗,− . (28)

In case of other material specific parameters, namely the
mass density, the heat capacity, the susceptibilities, we use
the volumetric fraction such that the microstructure effect is
excluded

ρ∗ = (1 − v2)ρ1 + v2ρ2 ,

<1/2 >1/2ΨΨ

PARTICLES WELL SEPARATED PARTICLE TOUCHING

Fig. 2 Comparing microstructures with the same volume fractions.
Flakes touch more, and thus need a higher value of Ψ

c∗ = (1 − v2)c1 + v2c2 ,

χ∗ = (1 − v2)χ1 + v2χ2. (29)

4.2 Nonlinearity due to the material parameters

As pointed out in the Introduction, the heat and electrical
conductive material properties of all the materials depend on
temperature and electric field.Weassume for this dependence
the following functional form:

σ = σo exp
(

− C1
T − Tref.
Tref.

)
exp

(
− C2

‖E‖ − Eref.

Eref.

)
,

κ = κo exp
(

− C3
T − Tref.
Tref.

)
exp

(
− C4

‖E‖ − Eref.

Eref.

)
,

(30)

where C× are material constants and Tref., Eref. are refer-
ence values. For Tref. we can choose the initial temperature,
where no flux or stress arise. For Eref. we can choose the
electric field at the breakdown voltage, at which the insula-
tor becomes partially conductive. The constant σo, κo is the
value at the reference temperature and electric field. For the
sake of simplicity we will use C3 = C4 = 0 providing a
constant thermal conductivity.

5 Results and comparison

By using the reduced model and FEM implementation, we
solve the system shown in Fig. 1 out of four different mate-
rials for the equal set of boundary conditions. Since the
conductivity of copper is high, there is a significant amount
of production of entropy due to Joule’s loss, increasing the
temperature of the system (Fig. 2). For the reduced model we
only solve in 1D and visualize in 3D by using the material
coefficients compiled in Table 1.

In the case of FEM implementation, we embed the geom-
etry in air as shown in Fig. 3.
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Table 1 Material coefficients for the reduced model

Material Coefficient Unit

Copper ρ = 8960 kg/m3

σo = 5.8 · 107 S/m

C1 = 1 –

C2 = 0 –

κ = 400 W/(mK)

c = 390 J/(kgK)

Epoxy resin ρ = 1000 kg/m3

σo = 1 · 10−13 S/m

C1 = 0 –

C2 = 10 –

κ = 1.5 W/(mK)

c = 800 J/(kgK)

Eref. = 500 · 106 V/m

OCP ρ∗ = 1100 kg/m3

σ ∗
o = 10 S/m

C1 = 10 –

C2 = 10 –

κ∗ = 1 W/(mK)

c∗ = 1000 J/(kgK)

Eref. = 20 · 106 V/m

ECP ρ∗ = 3000 kg/m3

σ ∗
o = 103 S/m

C1 = 10 –

C2 = 0 –

κ∗ = 10 W/(mK)

c∗ = 700 J/(kgK)

Fig. 3 Power transmission cable model, copper as core (orange), resin
as insulator (gray), OCP (green), and ECP (blue), all embedded in air
(transparent). (Color figure online)

This 3D geometry allows us to set homogeneous far
field boundaries, i.e., electromagnetic potentials vanish at

Table 2 Additional material coefficients for the FEM model

Material Coefficient Unit

Copper χel. = 0 –

χmag. = −1 · 10−5 –

π = 68 · 10−6 V/K

Resin χel. = 2 –

χmag. = 0 –

π = 0 V/K

OCP χ∗
el. = 5 –

χ∗
mag. = 0 –

π∗ = 0 V/K

ECP χ∗
el. = 10 –

χ∗
mag. = 0 –

π∗ = 0 V/K

Air ρ = 1.2 kg/m3

σo = 3 · 10−15 S/m

C1 = 0 –

C2 = 0 –

κ = 0.0257 W/(mK)

c = 1005 J/(kgK)

χel. = 0 –

χmag. = 0 –

π = 0 V/K

the outer shell. In addition to Table 1, we use the material
parameters from Table 2.

All material constants are approximate but realistic val-
ues. The intention in this work is to test the proposed 1D
model against 3D model quantitatively. In the 1D approach
we obtain quick results because of several simplifications.
One time step lasts approximately 1.5 s on a single core,1

where most of the computation time is used for projecting
on a 3D mesh for the sake of a better visualization. In the 3D
model we involve many coupling effects and assume that the
result ismore accurate than the 1Dapproach.As expected, 3D
modeling takes longer, for a time step approximately 17min
on 6 cores with the samemachine.We perform a test example
with both approaches and compare them in the following.

Consider a power station of P = 0.5MW where at the
beginning of transmission the electric potential is converted
to (a relatively low potential difference) V = 30kV at a stan-
dard frequency of 50Hz. The conductor copper possesses
the resistance R = V 2/P and the resistivity r = RA/L ,
where the cross-section A = AI and the total length L =
L I+L II+L III are given. The electrical conductivity of copper
is exchanged with σo = 1/r in order to model this phe-
nomenon. In reality, there is an additional resistor restricting

1 Intel Core i7-2600 at 3.4GHz running on Ubuntu server with Linux
4.4.0-64-generic
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Fig. 4 At the quarter of a cycle, t = 0.005s, distribution of elec-
tric potential (colors) and electric field (scaled arrows with colors) are
shown. (Color figure online)

the electric current for the circuit. By applying the electric
potential of 30kV sinusoidally on one end and grounding
the other end, we compute the electric potential and temper-
ature directly, out of which the electric field and current are
derived.

Since the loading is sinusoidal, we present in Fig. 4 the
distribution of potential and electric field at the quarter of a
cycle, where the amplitude 30kV is reached.

The complete solutionof electromagnetic potentials results
in the expected characteristic closed (equipotential) lines.
Within the conductor, the magnitude remains nearly constant
and a comparison with the reduced model in Fig. 5 convinces
us that the approximation of 1D model within the conductor
has an error up to 4%.

It is important to recall that we use an effective conduc-
tivity in 1D model introduced in Eq. (7). For this specific
example the approximation is accurate leading to a precise
estimation of the electric current, too. Distribution of electric
current and its comparison can be depicted in Fig. 6.

Since the electric potential is computed by using linear
finite elements, its derivative leading to electric field and
electric current is constant within each elements. In the post-
processing, however, the visualization smoothes the fields
such that apparent spikes are seen. The electric conductivity
depends on the temperature, which is non-constant in 3D and
constant in 1D across the cross-section. Therefore, there is a
significant discrepancy between the computed magnitude—
white arrows represent 3D computation, black arrow is the
constant current from 1Dmodel. However, the mean value of
3D solutionmatches the 1D electric current such that Joule’s
heat over the cross-section is nearly identical resulting to a
similar temperature evolution, as seen in Fig. 7 at the end of
a period.

We use discontinuous elements for presenting the 1D tem-
perature solution such that the value has a sharp jump across
the interface. In 3D model we use continuous elements and
hence the interface is modeled depending on the mesh size.

Fig. 5 At the quarter cycle, t = 0.005s, electric potential distribution
(colors), electric field from 3Dmodel (top) as well as from 1D (bottom)
with scaled and colored arrows on different slices are shown. (Color
figure online)

Fig. 6 At the quarter cycle, t = 0.005s, electric current is shown. Top:
magnitude in colors and scaled arrows inwhite from 3Dmodel. Bottom:
additionally 1D solution as black arrow (equally scaled) as representing
the constant current along the cross-section

This phenomenon is indicated by using a cut on the element
boundaries on yz-plane. The temperature difference to ini-

123



Comput Mech

Fig. 7 Temperature distribution obtained from 1D (left) and 3D (right) solutions, shown at the end of a loading cycle at 50Hz, i.e., t = 0.02 s
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Fig. 8 Temperature and electric field change over time under the exci-
tation at 50Hz. Top: electric field in 5 cycles. Bottom: temperature in
1000 cycles

tial Tref. = 300K is accurate within 1% error such that 1D
model can be declared as verified for this specific application.
In other words, the taken assumptions are admissible for the
presented case. Polarization can be spared since the effective
conductivity is approximating the electric potential distribu-
tion accurately. The weak coupling between the temperature
and electric field is appropriate, because the instantaneous
evolution of the electric field generates the same amount
of heat over the whole conductor. Temperature conduction
over the cross-section can be omitted as long as the cooling
over the boundary becomes important for the application. In
other words, we miss the effect of heat exchange with the
environment. For studying the consequences, we perform
another simulation only with the 1D model for 1000 cycles
and present the electric field for the first 5 cycles and tem-
perature over time in Fig. 8.

Even after 1000 cycles meaning 20s, the temperature fails
to reach a steady state. This phenomenon is indeed due to the
lack of heat exchange in 1D model. Owing to the compu-
tational cost, 3D modeling is not feasible. For a concrete

application, a correction factor to Joule’s heat—the system
specific parameter a in Eq. (9)—can be introduced amending
the temperature rise over time by simulating once with 3D
model. For encouraging further studies, we make all codes
publicly available in [1] to be used under the GNU Public
license as written in [15].

6 Conclusion

In HVmachines, corona discharge is seen as one of the main
reasons of power losses. Efficient corona protection is of
paramount importance and computational methods help to
propose a new design or to amend existing designs. An elec-
tromagnetic simulation of part of a transmission is possible
in 3D with all electrodynamics and coupling phenomena.
However, such an analysis is computationally costly such
that reduced-order models are used in the industry. We have
developed a 1D model under several assumptions and veri-
fied their admissibility through a single run of a 3D model.
The computed variables (electric potential and temperature)
are compared, as well as the derived variables such as electric
field, electric current are studied. The reduced-order model
involving material nonlinearities performs an excellent esti-
mation of the transient simulation for a very specific but
realistic design. One deficiency and a possible correction is
discussed. Codes are made publicly available for continua-
tion of similar efforts for concrete geometries and conditions.
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