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Abstract The trajectories and branching of electrical dis-
charges through gaseous atmospheres, such as lightning and
coronal emissions from high-voltage electromachinery, are
of interest in a variety of applications. Multiple branches can
evolve in an initially poor atmospheric conductor when a
strong electrical discharge builds up, then propagates through
the atmosphere by dielectric breakdown. Multiple branches
can be generated in gases because of the disordered charac-
ter of the media at the microscale, with an overall influence
occurring from the ambient electric fields. In this paper,
we develop a sufficiently flexible computational model to
describe discharge trajectory and branching. The framework
allows analysts to rapidly simulate thousands of electri-
cal discharge scenarios, in order to statistically explore the
dependency of the overall system behavior on the relevant
physical parameters.

Keywords Electrical discharge · Atmospheres · Propaga-
tion · Branching

1 Electrical discharges in gaseous atmospheres

The trajectory and branching of an electrical discharge in
a gaseous atmosphere is of interest to industry and the
natural sciences (Figs. 1, 2). Relevant, wide ranging, applica-
tions are (1) lightning, (2) end-coronal insulation protection
in high-voltage electromachinery, such as industrial-scale
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generators and (3) controlled electrical ignition in internal
combustion engines. The most common naturally occurring
electrical discharge in a gas is lightning. It is believed that
ice formation within a cloud causes positive and negative
charge separation, producing a potential difference between
the Earth and the lower cloud portion, leading to a pos-
sible electrical discharge. One school of thought proposes
that a discharge will occur due to electrostatic induction,
under the assumption that charge separation occurs in con-
junction with strong updrafts that carry supercooled water
droplets upwards, which then collidewith ice crystals to form
“graupel”, which is a soft ice-water mixture. This results in
negative charged graupel and positive charged ice crystals.
Updrafts drive the less heavy ice crystals upwards, causing
theupper portionof the cloud to attain a positive charge,while
gravity causes the heavier negatively charged graupel to fall
to lower portions of the cloud, building up a negative charge.
The process of charge separation and accumulation continues
until the electrical potential becomes strong enough to initi-
ate a lightning discharge.1 Another school of thought asserts
that droplets of ice and rain become electrically polarized
as they fall through the Earth’s natural electric field and the
colliding ice particles become charged by electrostatic induc-
tion. There are many other influencing factors cited in the
literature, such as humidity, pressure, solar induced activity,
gamma ray bursts (leading to ionization of air molecules),
volcanic dust, intense forest fires, etc. Detailed discussions
can be found in Rakov and Uman [1], Demirkol et al. [2],
Uman [3], Fishman et al. [4], Inan et al. [5] and Inan and
Inan [6]. The physics of lightning is virtually identical to

1 Lightning travels between 2 × 105–106 m/s with an average current
between 100 and 200 amperes and a peak of 1000–2000 amperes. For
comparison purposes, a light bulb operates at one ampere, while a typ-
ical electrical socket operates at 15 amperes.
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Fig. 1 Pictures of various discharge scenarios from natural causes (lightning). Photos available courtesy of the public domain site https://pixabay.
com/en/lightning-storm-weather-sky-399853/ and https://pixabay.com/en/flashes-thunderstorm-electricity-500447/

Fig. 2 Pictures of various discharge scenarios from Tesla coils. Photo available courtesy of the public domain site https://pixabay.com/en/
flash-tesla-coil-experiment-113310/ and https://pixabay.com/en/flash-tesla-coil-experiment-113302/

electrical discharges in high-voltage electromachinery. The
understanding of discharge trajectories is critical to end-
corona insulation (protection) systems, in order to mitigate
harmful electrical discharges. See for example, Staubach et
al. [7–10], Mcdermid [11], Merouchi et al. [12,13], Schmer-
ling et al. [14], Weida et al. [15], Day et al. [16], Kogan et al.
[17], Liu and Xu [18], Taylor [19], Krpal and Kuerov [20],
Sumereder et al. [21], Hudon and Rehder [22], Abdel-Salam
and Shamloul [23], Litinsky et al. [24], Guastavino et al. [25],
Ou and Techaumnat [26], Bouhaouche et al. [27], Nazir and
Phung [28], Zohdi [29–33]. Another related application is
the development of precisely-controlled electrical ignition
systems for ultra lean fuels such as ethanol (see Azevedo
et al. [34] and Schwartz [35]). Recent advancements in the
real time adjustment controls for in-situ ignition systems is
becoming viable. Such approaches are important for further
development of next-generationCompression IgnitionDirect
Injection (CIDI) and Homogeneous Charge Compression
Ignition (HCCI) engines. Such systems can lead to improved
efficiency by igniting ultra lean fuels at low temperatures,
where standard compression engines are limited and misfir-
ing can occur. We refer the interested reader to Ikeda et al.
[36,37], Leipold et al. [38], Phelps [39], Aleiferis et al. [40],
Johansson [41], Kogoma [42], Phuoc [43,44], Morsy et al.

INITIAL
DISCHARGE

Fig. 3 Growth of branches from an initial discharge branch

[45,46], Ma et al. [47,48], Mohamed et al. [49], Weinberg
and Wilson [50], Dale et al. [51], Ronney [52], Beduneau
et al. [53], Chen and Lewis [54], Kim et al. [55], Ombrello
and Ju [56], Mintoussov et al. [57], Korolev and Matveev
[58], Esakov et al. [59], Linkenheil et al. [60,61], Kawahara
et al. [62], Mehresh et al. [63], Bogin et al. [64] and Prager
et al. [65]. A further understanding of what influences the
propagation of electrical discharges in all of the mentioned
applications is important.

To a large degree, the discharge trajectory propagation
is influenced by microscale events that transpire at the dis-
charge front, where a charge buildup occurs and then “plows’
through the gas, producing many branches, due to the disor-
dered random nature of suchmedia. The branching pathways

123

https://pixabay.com/en/lightning-storm-weather-sky-399853/
https://pixabay.com/en/lightning-storm-weather-sky-399853/
https://pixabay.com/en/flashes-thunderstorm-electricity-500447/
https://pixabay.com/en/flash-tesla-coil-experiment-113310/
https://pixabay.com/en/flash-tesla-coil-experiment-113310/
https://pixabay.com/en/flash-tesla-coil-experiment-113302/


Comput Mech

branch tip

STARTING POINT
electrons at the 

total group charge=q i

INTERACTIONS

STARTING POINT

WITH THE CHARGE
FROM ALL OTHER
CHARGES

Fig. 4 Interaction of a branch endpoint with all others at an instant in time. All other charges also experience interactions with all other endpoints
in a similar manner, as well as with external sources

that the discharge may take are in part determined by dielec-
tric breakdown whereby, for sufficiently strong electrical
fields, an initially poorly conducting gaseous medium can
become an extremely good conductor. The process initiates
from a sufficiently strong charge build-up which can accel-
erate free electrons that are present in a gas until they attain
high enough energies to dislodge other electrons in initially
neutral gas molecules. The process then repeats itself in a
chain-reaction-like manner that results in the evolution of
multiple pathways (branches). The investigation of dielec-
tric breakdown dates back at least to Townsend [66], with
detailed discussions found in, for example, Inan and Inan
[6]. In this work we do not focus on the discharge origin, but
concentrate on developing a sufficiently flexible computa-
tional model to describe discharge trajectory and branching
(Fig. 3).

2 Governing equations

We consider an instant in time t when i = 1, 2, 3, . . . , N
branch endpoints exist, each containing a charge qi with a
massmi . The dynamics of the endpoint of each branch,where
each charge has built up, is governed by the basic equation
of electrodynamics (Fig. 4)2

mi v̇i = qi

⎛
⎝Eext (r i ) +

N∑
j=1, j �=i

E j (r i )

⎞
⎠ , (2.1)

where r i is the location of the branch endpoint, vi is the
velocity of the discharge and Eext (r i ) is the external ambi-
ent electric field of the environment acting at the point r i
and E j (r i ) is the electric field induced by branch tip j on
branch tip i . We assume that the mass and charge of each

2 We ignore magnetic fields.

branch is concentrated at the endpoint where the build up
occurs via dielectric breakdown, and that any other induced
electric fields are due to the charges in the other branches and
external sources (power sources, Earth, etc), all of which will
be superposed to produce the righthand side of Eq. 2.1.

3 Electric fields due to surrounding branches

Consider an electric field generated by the j th branch (Fig. 4),
where the entire charge of that branch is aggregated as a point
source at the end of the branch (during dielectric breakdown
buildup phase), governed by Gauss’ law (A and V being the
surface area and volume encompassing the charge):

∫
A
D · n d A

︸ ︷︷ ︸
=εE4π ||r−r j ||2

=
∫
V
Q dV = q j , (3.1)

where D is the electric field flux, ε is the atmospheric elec-
tric permittivity, E is the electric field (||E|| = E), Q is
the charge per unit volume, q j is the total charge in the j th
branch, leading to

E = q j

4πε||r − r j ||2 n j , (3.2)

where n j is the normal-outward unit vector and ||r − r j || is
the distance from the j th branch point source to any point in
the system (r). Branch-to-branch interaction has a tendency,
because of the like charges in branches, to spread out the
branches.

4 Trajectory cone

We refer to the branches that will grow from the tip of a
branch as “subbranches”. The forward momentum of the
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Fig. 5 Cone of feasible subbranch trajectories

charge (Eq.2.1) in a branch biases the directions of the sub-
branches that are feasible at a tip. In order to take this into
account, we adopt the following cone-like constraint (Fig. 5):

vi

||vi || · ni ≥ tol, (4.1)

where vi||vi || is the previous direction of the branch, ni is a
possible direction of a subbranch, and −1 ≤ tol ≤ 1. A
high positive value of “tol” indicates that the new branch
direction is highly aligned with the previous main branch
direction, while negative values indicate the branch could
move backwards.

Remark Algorithmically, the number of subbranches that
arise at a tip is determined by multiplying the charge by a
random number between 0 and 1. A random path is also
generated, within the feasible cone of trajectories, and the
charge is assigned to that random path. This produces one
subbranch. The process is then repeated for the remainder of
that charge charge in that tip (producing more subbranches)
until the charge remaining is depleted. This is done at each
tip.

5 Algorithm

The algorithm is as follows (after setting the initial total dis-
charge):

1. For each branch, the compute electric field from external
sources and other surrounding branches.

2. For each branch, compute discharge “subbranches” by
creating a random set of subbranches at the branch tip
and distributing the branch charge among them, within
the feasible trajectory cone.

3. For each branch, compute the trajectory of each new sub-
branch (velocity and position) by numerically solving
Equation 2.1:
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Fig. 6 Example of a sheet-source term

v̇k ≈ vk(t + �t) − vk(t)

�t

= qk
mk

⎛
⎝Eext (t) +

N∑
j=1, j �=k

E j (rk(t))

⎞
⎠ , (5.1)

yielding the following update formula

vk(t + �t) = vk(t) + qk�t

mk

×
⎛
⎝Eext (t)+

N∑
j=1, j �=i

E j (rk(t))

⎞
⎠, (5.2)

and for the position, ṙk = vk , we have

rk(t + �t) = rk(t) + �tvk(t). (5.3)

4. Increment time forward and repeat the procedure.

Remark 1 To the knowledge of the author, there are no
such models of this phenomena in the literature, which has
extensively been studied in the preparation of this publica-
tion.

Remark 2 It the upcoming simulations, the simulations were
run with extremely time-steps, then repeatedly re-run with
even finer time steps until there were negligible changes
between refinements. The time-step size threshold that met
this criteria, for all of the simulations, was adopted. There-
fore, the simulations can be essentially free of numerical
error. Because of the relatively simple structure of the equa-
tions, the simulations were all run of a Mac Powerbook
Laptop in a matter of seconds, thus making the model ideal
for parameter studies.
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Fig. 7 Six different realizations of branches for a discharge of qD = −10−3 C and flat surface charge of qA = 10−1C. The color scale indicates
the magnitude of the charge relative to the original total discharge magnitude, as well as the charge-size-dependent spherical markers. (Color figure
online)
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Fig. 8 Maximum excursion from z-axis (R) for 100 discharges (random pathway realizations) with the sheet charge varied: qA =
10−2, 10−1, 1, 10, 102, 103 C and qD = −10−3 C. The horizontal line is the average. The initial discharge is the same for all of the scenarios

6 Model problem: discharge interaction with an
external charged infinite sheet source

As a model problem, we employ a simple external electric
field. Accordingly, consider an external electric field gener-
ated by infinite flat sheet source, governed by Gauss’ law
(Fig. 6):

∫
A
D · n d A

︸ ︷︷ ︸
=εE2A

=
∫
V
Q dV =

∫
A
QA d A = qA A, (6.1)

where qA is the charge per unit surface area, leading to

E = qA
2ε

n = Eext , (6.2)

where n is the normal-outward unit vector from the flat
plane.3

3 All electric fields (
(
Eext (t) + ∑N

j=1, j �=i E j (r i (t))
)
are superposed

to produce the righthand side “load” in Eq.2.1.
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6.1 Parameter selection

As an example, for a parameter set (below), 100 realizations
were simulated, with the same starting conditions, but differ-
ent feasible random pathways. The system parameters were
chosen for illustration purposes, and were not intended to
simulate a specific natural or industrial scenario:4

• The starting location of the discharge: r(t = 0) =
(0, 0, 103)m,

• The external field location for a flat sheet: rE =
(0, 0, 0)m as in Fig. 7,

• Initial total system discharge: qD = −10−3 C.
• Sheet charge, varied:qA = 10−2, 10−1, 1, 10, 102, 103 C

or in nondimensional form qA
|qD | = 10, 102, 103, 104,

105, 106.
• The initial velocity of the discharge: v(t = 0) =

(0, 0,−2 × 105)m/s.
• The permittivity of the atmosphere: ε = 1.00059 × εo,

where εo = 8.8541878176 × 10−12 F/m.
• The time-step size: �t = 0.1

||v(t=0)|| .• The cone tolerance (for Eq. 4.1): tol = 0.85.

6.2 Discharge statistics

The frames in Fig. 7 illustrate the variation in branching for
N = 100 random realizations, for each level ofqA.A relevant
quantity is the radius of the circle (R) that encompasses all
of the branch strikes on the flat surface (z = 0). Specifically,
we define the excursion (R) away from the z-axis via

R def= max
√
r2x + r2y , (6.3)

where rx and ry are the maximum deviations in the x and y
directions from the vertical (z axis). Statistically, the results
in Fig. 8 can be described by computing the average (A)

A def= 1

N

N∑
i=1

Ri (6.4)

and standard deviation (S)

S def=
√√√√ 1

N

N∑
i=1

(Ri − A)2. (6.5)

Table 1 provides information on the excursion’s depen-
dence on the flat source charge magnitude. Clearly, the

4 We set the number of potential chances to branch along a pathway to
20. The total dischargemass was set tomD = 10−2 kg which represents
all of the system mass (the charged electronic gas).

Table 1 The statistics as a function of qA for qD = −10−3 C

Surface charge: qA Ratio: qA
|qD | Mean: A SD: S

10−2 10 967.755 165.052

10−1 102 658.985 111.670

1 103 136.393 21.226

10 104 17.394 2.352

102 105 5.406 0.891

103 106 1.719 0.326

excursion decreases with the strength of the flat source
electric field, which is dictated by qA (see Figs. 7, 8). As
the external (attractive) electric field increases, the magni-
tude of stochastic nature of the branching diminishes. For
this model problem, this occurs for a ratio approximately
qA/|qD| ≈ 103m−2. Of course, for other system settings,
this threshold would be different. All simulations were run
on a standard laptop with a code written by the author.

7 Summary

In summary, a simple computational model and simulation
framework was developed to describe the propagation and
branching of electrical discharges in gaseous atmospheres.
The framework allows analysts to rapidly simulate thou-
sands of electrical discharge scenarios, in order to explore
which parameters significantly affect the system behavior.
The model is easy to encode and allows analysts to con-
duct numerous statistical sensitivity studies. As indicated,
the algorithm is based physically on dielectric breakdown.
Essentially, the charges at a branch tip build up and then plow
through the atmosphere, resulting in multiple new pathways.
In the case of natural atmospheric discharges (lightning),
Earth-generated electrical field distributions can be found
in Volland [67], Markson [68], MacGorman and Rust [69],
Uman [70] and Rakov and Uman [1]. Measurements of local
variations in relevant atmospheric property data can be found
in, for example, Bering et al. [71], Holzworth et al. [72], Pinto
et al. [73], Hu et al. [74]. Also, of course, there are many
industrially relevant machinery-generated external electric
fields possible, such as:

• An electric field due to charged external point source
(Fig. 9), which is governed by Gauss’ law:

∫
A
D · n d A

︸ ︷︷ ︸
=εE4π ||r−ro||2

=
∫
V
Q dV = qp ⇒ E

= qp
4πε||r − ro||2 n, (7.1)
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Fig. 9 Left Example of a point-source term. Right Example of a line-source term

where qp is the charge at a point, n is the normal-outward
unit vector and ||r − ro|| is the distance from the point
source.

• An electric field due to a charged external conduct-
ing wire source (Fig. 9), idealized by an (extremely thin
cylinder) source, governed by Gauss’ law:

∫
A
D · n d A

︸ ︷︷ ︸
=εE2π ||r−ro||L

=
∫
V
Q dV =

∫
L
QL dL = qL L

⇒ E = qL
2πε||r − ro||n, (7.2)

where qL is the charge per unit length, n is the radially-
outward (to the cylinder) unit vector and ||r − ro|| the
radial distance from the line source.

Of course one can generate more complex fields for other
structures numerically, for example using Finite Difference
Time Domain Methods or Finite Element Methods. Gen-
erally speaking, the specific directions subbranches of the
local branching pathways are somewhat random, due to the
interaction with the surrounding gaseous atmosphere, with
influence coming from the ambient electrical field of the envi-
ronment. More detailed simulation of ion and electron flows,
taking into account all of the charged species which comprise
a branch, would require billions or trillions of interacting
degrees of freedom, which is computationally intractable for
practical use. Thus, so-called multiscale approaches, which
utilize simplified models, such as the model presented in
this paper, for the bulk of the calculations, but detailed mod-
els for ion and electron interaction and dielectric breakdown
models at the branch front tip are a viable way forward.
Large-scale particle interactionmodels havebeen extensively
studied, other types of particulate systems, in Onate et al.
[75–77], Rojek et al. [78], Carbonell et al. [79], Labra and
Onate [80], Leonardi et al. [81], Cante et al. [82], Rojek [83],
Bolintineanu et al. [84], Avci and Wriggers [85] and Zohdi

[29–33,86–93] and is a topic of current investigation by the
author.
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