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Abstract

The increase in readily available computational power raises the possibility that robust agent-based modeling can play a
productive role in the analysis of population dynamics. Accordingly, the objective of this work is to develop a robust agent-
based computational framework to investigate the emergent structure of initially intermeshed hostile, competing, populations on a
global scale. Specifically, we develop a model based on discrete entities (agents), each with their own interaction rules with their
immediate neighbors, innate skill sets, reproductive rates, mobility and lifespans to represent a population. The global population
is then allowed to evolve according to these local rules over many generations. The biological systems-level applications are
numerous, stemming from human conflict on the macroscale to microbes on the microscale. Numerical examples are provided to
illustrate the model construction and the results of such an approach.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of this work is to develop a computationally-amenable agent-based model to investigate the behavior
of competing populations by directly working at the individual level of interaction. The ubiquitous availability
computational power raises the possibility that robust agent-based modeling can play a significant role in the analysis
of population dynamics. The essential feature of the model is that discrete entities (agents) are used to represent
a population, each with their own interaction rules with their immediate neighbors, skill sets, reproductive rates,
mobility and lifespans. The global population is then allowed to evolve according to these local rules. There are a
large number of applications. However, before proceeding with the construction of such an approach, it is useful
to review basic concepts in the study of population dynamics, which dates back over two centuries to the work of
Thomas Malthus. In 1798, he postulated that a population, denoted p, at a future time (t + ∆t), is related to the
current population (at time t) by

p(t + ∆t) = λp(t), (1.1)
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Fig. 1. A model problem of a “planet” with two intermeshed different populations, which suddenly become hostile.

where λ = 1 + b − d, where bp(t) is the number of births at time t and where dp(t) is the number of deaths at time t .
One may write

p(t + ∆t) − p(t) = (λ − 1)p(t), (1.2)

leading to, in the limit as ∆t → 0,

p(t) = p(0)e(λ−1)t
= p(0)e(b−d)t , (1.3)

provided that λ is constant.
Virtually all subsequent, more complex phenomenological continuum models build upon the Malthusian approach.

For extensive reviews, see Murray [1]. Extensions of such models to describe competing populations, such as the
Lotka–Volterra predator–prey relations, were developed in the 1920’s. For example, consider an overly simplified, yet
illustrative, phenomenological model for two interacting populations (p1 and p2, Fig. 1), given by

ṗ1 = r p2 − τp1, (1.4)

where r represents p1’s growth dependency on p2, τ represents p1’s growth dependency on p1 and

ṗ2 = ap1 − γ p2, (1.5)

where a represents p2’s growth dependency on p1, γ represents p2’s growth dependency on p2. For both populations
to grow, we must have

ṗ1 = r p2 − τp1 > 0 (1.6)

and

ṗ2 = ap1 − γ p2 > 0. (1.7)

Thus there are four parameters, and clearly many possible combinations which can lead to growth, coexistence,
extinction, etc.

With some difficulty, one can further extend these phenomenological approaches to simple spatial domains. These
approaches require extensive, complex, discretization techniques and are of limited value for studies on population
dynamics with underlying complex interaction between populations.1 Such models have limited predictive capability
and are computational expensive due to the extremely fine discretization needed to achieve tolerable numerical
accuracy. Independent of the numerical difficulties, such modeling approaches attempt to develop continuum type
field equations, by passing to the limit as ∆t → 0, ∆x → 0 make somewhat unrealistic assumptions in order to obtain
tractable partial differential equations. At best, historically, most approaches apply asymptotic analysis to the resulting

1 As an example, the appendix provides more on such spatio-temporal “PDE-based” approaches, in particular for biological applications on the
cellular/microbial level.
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Fig. 2. The usual process of developing a continuum model from an inherently discrete system, which is then re-discretized.

Fig. 3. Growing populations producing boundaries.

equations in order to extract some qualitative estimates of the model behavior. Furthermore, one must question the
process of first homogenizing a discrete population’s characteristics to develop continuum models, resulting in partial
differential equations and then discretizing them back again into nodal values. This process is not bijective, in other
words, one does not recover the original discrete system (Fig. 2). Also, because of the simplifying assumptions
on interaction, births, age structuring, etc., that are typically made, in order to obtain tractable field equations, the
resulting discrete equations are not as physically meaningful as the true discrete population interaction which is based
on complex rule-driven processes that are not amenable to smooth (tractable) continuum representations. Finally, in
dealing with small populations, or populations which become quite small and heterogeneously dispersed during the
time-history of interaction, the assumptions behind regularization techniques leading to continuum models, may be
difficult to justify. This motivates the approach which we will present.

2. Objectives of this work

As mentioned in the outset, the objective of this work is to develop a robust agent-based computational procedure
to investigate the behavior of initially intermeshed hostile species populations by directly working at the rule-driven
level of interaction. The global populations are then allowed to engage and to evolve according to the local rules.
Generally, one should expect that (Fig. 3), if the two hostile groups were initially uniformly dispersed over some area,
were of equal number and had similar characteristics: (1) both groups would suffer massive fatalities, leaving only
well separated, “enclaves” of homogeneous species, where one group had locally dominated over the other, (2) the
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enclaves would then grow, unrestrictedly, until they would eventually encounter one another again, resulting in “border
conflicts” and (3) the growing, hostile, groups would develop well defined boundaries. Some of the key parameters
are:

• The reproductive rates of the respective populations,
• The nominal life-spans of the respective populations,
• The “combat skills” of the respective populations and
• The mobility of the populations.

This approach allows one to study the spatio-temporal evolution of interacting populations, age-structuring and
other demographic information. Furthermore, when coupled to a robust inverse algorithm one can determine optimal
strategies for a desired demographic outcome, such as “parity points”, i.e. multiple parameter sets which yield stable
population coexistence.

Remarks. Although it is obvious to draw an analogy to human conflict at the macroscale, a problem of perhaps more
concern is the microscale world. For example, during the last decade there has been a renewed interest in the study
of epidemics, typified by the recent outbreaks of the Ebola and Zika viruses. Furthermore, interest has now grown
in the area of astro-biology, specifically concerned with so-called “forward-contamination”, defined as Earth-based
microbes infesting celestial bodies, carried by Earth-based spacecraft. Safeguards against contamination are driven
by the COSPAR regulations (Committee on Space Research) and the various outer space treaties signed over the last
50 years. Forward-contamination has become a timely issue since the recent discovery of water on Mars, as well as
on the moons of Saturn and Jupiter. For example, it has been reported over the last few years that on Mars, water
in liquid state could form seasonally on the surface where snow has been deposited on soils with saline content
(Martinez and Renno [2]). This is critical, since terrestrial bacteria can grow in brines. Furthermore, because the lack
of a magnetic field and minimal atmospheric shielding (the Martian overhead airmass is 16 g/cm2 instead of the
terrestrial 1000 g/cm2), there are intense radiation sources reaching Mars (100 times that of Earth), however, there
still exist a wide range of microbes which can survive. Additionally, while it would be difficult to maintain life directly
on the surface of Mars, life in the subsurface could be possible. Space agencies such as NASA have long reported
that spores of Bacillus subjected to years of the vacuum of space and cosmic and extraterrestrial solar radiation, as
well as temperature fluctuations, can survive if they are somewhat shielded by the exterior of a spacecraft and then
deposited into the immediate subsurface upon landing. Of course, reverse (backward) contamination is perhaps of
more concern, namely if astronauts become contaminated it is possible they could bring these potential pathogens back
to Earth. Thus, while there exist test protocols to guard against such contamination, for example plans developed by
the NASA Planetary Protection Office, concerns remain. We refer the reader to Beaty [3], Fischer et al. [4], Martinez
and Renno [2], Summons et al. [5], Michalski [6] and Debus [7] for details.

3. Direct agent-based interaction models

We now construct a model problem based on discrete rule-driven interaction between agents of two populations.
One can consider an agent as an individual or a small group of individuals (a “meta-person”).

3.1. Rules of engagement

Consider the following construction, for the “rules of engagement” for two hostile populations, which are either in
close proximity to one another or intermeshed (Fig. 4):

• If two agents of the opposing populations, denoted (1) and (2), come within a certain conflict distance,

∥r(1)
i − r(2)

j ∥ ≤ d(1−2)
i j , (3.1)

then two are said to engage in a “local” conflict.
• The agents alert all “support agents” of their respective populations, within a certain “support distance”,

∥r(1)
i − r(1)

j ∥ ≤ s(1−1)
i j , (3.2)
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Fig. 4. The interaction between two groups.

and

∥r(2)
i − r(2)

j ∥ ≤ s(2−2)
i j , (3.3)

in order to aid in the local conflict.
• The “combat skills” of the two populations may be different. Consider a certain number of the agents (subgroup) of

population (1), p1, which are engaged in a local conflict and (2), p2, which are engaged in the same local conflict.
The percentage of each group in the local conflict are

φ1 =
p1

p1 + p2
and φ2 =

p2

p1 + p2
. (3.4)

Consider the following rules for victory:
1. If w(1)φ(1)

= w(2)φ(2) then all agents of both populations, that are involved in the local conflict, perish.
2. If w(1)φ(1) > w(2)φ(2) then all agents of population (2) perish and min(p1, (w

(1)φ(1)
− w(2)φ(2))(p1 + p2)) of

population (1) survive.
3. If w(1)φ(1) < w(2)φ(2) then all agents of population (1) perish and min(p2, (w

(2)φ(2)
− w(1)φ(1))(p1 + p2)) of

population (2) survive.
• An agent of either population cannot participate in two local conflicts simultaneously.
• Once an agent of either population perishes, it cannot participate in any further conflicts.
• If an agent of a population survives beyond a certain number of conflict periods then it produces offspring, and

then perishes. The offspring are placed randomly within an “offspring” radius, centered at the spatial location of the
parent. The number of children possible that an individual can have, at maturity, is given by (it is a gender-neutral
rule)

offspring = integer(φ × M) (3.5)

where 0 ≤ φ ≤ 1 is a random number and where M is the maximum. The function “integer” extracts the nearest
integer from (φ × M). After giving birth to the offspring once, the agent cannot have offspring again.

The development of a continuum approximation and corresponding rediscretization, would be extremely tedious, if
not impossible. The relative ease at which one can generate two populations, and step them through several conflict
periods is rather obvious. This is straightforward to implement.

3.2. Algorithm

The algorithm is as follows:

• STEP 1: Select:
• (a) The initial number of agents in the populations.
• (b) The conflict distance.
• (c) The support distances for populations.
• (d) The local conflict manpower weight for the populations.
• (e) The age to maturity for an agent for reproduction.
• (f) The lifespan of an agent in each population.
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• (g) The total simulation time, T .
• (h) The conflict cycle time = δt∗. (The number of conflict rounds is T

δt∗ .)
• (i) The maximum number of children for an agent in each population.
• STEP 2: Generate the initial population locations on the globe.
• STEP 3: For each population, loop over each agent, and check if there is an agent from the other population in the

conflict radius. If so, according to the “rules of engagement” in the previous section, compute the interaction of the
pair with their respective support agents who are within their respective support radii.

• STEP 4: Compute the survivors and deaths of the existing agents for the conflict period.
• STEP 5: Compute the births of new agents and their locations according to the placement formula in the previous

section for the conflict period.
• STEP 6: Update the ages of the entire population and compute any natural deaths.
• STEP 7: Repeat STEPS 2–6 for the next conflict period until the overall simulation time is complete.

4. A model problem

4.1. Parameter selection

As an example, consider two populations, each starting with 2000 agents (Fig. 5). We consider two main cases:

• Case 1 (Fig. 5): the populations are uniformly mixed across the globe, then become mutually hostile and mobile
and

• Case 2 (Fig. 6): the populations are uniformly mixed in an isolated zone then become mutually hostile and mobile.

Consider the following parameters:

• The initial number of agents in population 1: p1(t = 0) = 2000.
• The initial number of agents in population 1: p2(t = 0) = 2000.
• Globe radius, R = 1.
• The conflict distance: d(1−2)

i j = 0.05R.

• The support distance for population 1: s(1−1)
i j = 0.025R.

• The support distance for population 2: s(2−2)
i j = 0.025R.

• The local conflict manpower weight for population 1: w(1)
= 0.5.

• The local conflict manpower weight for population 2: w(2)
= 0.5.

• The number of conflict periods until viable offspring are produced for an agent in population 1 = 3.
• The number of conflict periods until viable offspring are produced for an agent in population 2 = 3.
• The number of conflict periods for the lifespan of an agent in population 1 = 15.
• The number of conflict periods for the lifespan of an agent in population 2 = 15.
• The maximum number of children for an agent in population 1 = 6.
• The maximum number of children for an agent in population 2 = 6.
• The age to maturity of an agent for reproduction in population 1 = 3.
• The age to maturity of an agent for reproduction in population 2 = 3.
• Total simulation time: T = 70.
• Conflict cycle time = δt∗ = 0.1.
• The random location of each offspring is computed by rparent

+ (vrand
+ vmean) × δt∗, which is then projected

back onto the sphere. In this case, we have chosen each component of vrand to be between −0.1 ≤ vrand
≤ 0.1

and ∥vmean
∥ = 0.

• For the second example (Fig. 8) of two populations initially isolated and intermeshed in a “patch”, both populations
are placed at random on the globe, but with the following restrictions at t = 0:

− 0.5R = r−

2xi ≤ r−

2xi ≤ r+

2xi = 0.5R (4.1)

and

− 0.5R = r−

3xi ≤ r−

3xi ≤ r+

3xi = 0.5R, (4.2)

where r1x is allowed to be arbitrary, with the only restriction being that the agent resides on the globe surface.
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Fig. 5. Case 1-globally-intermeshed: Starting from left to right and top to bottom, the progressive growth of two initially intermeshed populations.
Shown are after 1, 10, 20, 30, 40, 50 conflict periods. The system progresses from (1) intermeshed to (2) small enclaves to (3) larger homogeneous
populations with stable border conflicts.

4.2. Observations

• Fig. 5 illustrates the overall growth of the populations for Case 1. It indicates that when the populations are strongly
intermeshed, initially almost all perish. Fig. 6 illustrates the similar behavior for Case 2, with a more pronounced
initial die-off due to closer proximity for conflict.

• Afterwards, the populations grow, however, with distinct boundaries evolving between them.
• There are two main types of boundaries: (1) Boundaries between growing hostile populations where neither

population has a clear advantage and (2) Boundaries between growing hostile populations where eventually one is
squeezed between two populations, and two like populations meet and eventually merge together.

• Typically, for such systems with a finite number of agents, there will be slight variations in the behavior for different
random starting configurations. This is discussed further later. However, if one wished to extract some overall
statistical behavior, a number of different starting realizations must be tested and then the overall results averaged.

• In Figs. 7 and 8, the average age and the population size are depicted. Classical models usually incorporate so-
called “Leslie Matrices” (Leslie [8]), which stagger the growth rate process over the population based upon age.
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Fig. 6. Case 2-initially-isolated and intermeshed: Starting from left to right and top to bottom, the progressive growth of two initially intermeshed
populations. Shown are after 1, 10, 20, 30, 40, 50 conflict periods. The system progresses from (1) intermeshed to (2) small enclaves to (3) larger
homogeneous populations with stable border conflicts.

This is complex to incorporate in classical models. However, in the discrete agent-based method pursued in the
paper, age-structuring is produced automatically. The total population growth is oscillatory behavior due to the
interaction between populations. This effect can also be qualitatively predicted by classical analytical methods. For
the coupled model system (Eqs. (1.4) and (1.5)), by differentiating and substituting we obtain:

d2 p1

dt2 + (γ + τ)
dp1

dt
+ (τγ − ra)p1 = 0 (4.3)

and

d2 p2

dt2 + (γ + τ)
dp2

dt
+ (τγ − ra)p2 = 0. (4.4)

Thus, if the initial conditions are the same, the solutions are identical for this simple model. Let us put the equation
in classical form:

p̈1 + 2ζωn ṗ1 + ω2
n p1 = f (t), (4.5)
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Fig. 7. Case 1-globally-intermeshed. Left: The average age of each population. Right: The total population growth. Notice the oscillatory behavior
due to the interaction between populations, as qualitatively predicted by the analytical models.

Fig. 8. Case 2-initially-isolated and intermeshed. Left: The average age of each population. Right: The total population growth. Notice the
oscillatory behavior due to the interaction between populations, as qualitatively predicted by the analytical models.

where, assuming τγ − ra ≥ 0 and τ + γ ≥ 0

ωn =
√

τγ − ra (4.6)

and

ζ =
1
2

(γ + τ)
√

τγ − ra
. (4.7)

This is the form of a forced damped oscillator. Depending on the value of ζ , the solution will have one of three
distinct types of behavior: (1) ζ > 1, overdamped, leading to no oscillation, where the value of p1 approaches
equilibrium for large values of time, (2) ζ = 1, critically damped, leading to no oscillation, where the value of
p1 approaches equilibrium for large values of time, however faster than the overdamped solution and (3) ζ < 1,
underdamped, leading to damped oscillation, where the value of p1 approaches equilibrium for large values of
time, in an oscillatory fashion. In the case considered here, the populations would continue to grow, albeit in an
oscillatory manner, unless they were resource limited.

Remark. We note that, if desired, incorporation of “forbidden regions” i.e. “uninhabitable zones” within the domain
is relatively easily to enforce by checking at each time step whether an individual has entered such an area. If so, then
the individual is moved back outside, and a new position is recalculated with a different trajectory.
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5. Conclusions and extensions

The utility of the presented computational approach is that one can trivially modify the “rules of engagement”,
population sizes, reproduction rates, etc., and provide quantitative spatial and temporal information. Clearly, such a
computational technique is easy to implement, and it is no extra effort to increase the number of population character
parameters. For example, one could include a so-called epidemic effect, which is a relevant issue of concern for
backward contamination. In classical models, the most basic type of epidemic is a so-called “S-I-R” model, which
identifies three classes of individuals (Murray [1]):

• (1): S = “Susceptible”, that can contract diseases,
• (2): I = “Infected”, that can transmit the disease and who are infected and
• (3): R = “Removed” (dead), where the typical assumptions include: (a) the gain in the infected class is at a rate

proportional to the number of infected and susceptible, that is k1SI , k1 > 0 (b) the rate of removal of the infected is
proportional to the number of infected, k2 I , k2 > 0 and (c) the incubation period is short enough to be negligible.

• (4) In addition, if it is assumed that the various classes are uniformly mixed:
• (I) d S

dt = −k1SI ,
• (II) d I

dt = k1SI − k2 I and
• (III) d R

dt = k2 I .
• Adding all of the populations together,

d S

dt
+

d I

dt
+

d R

dt
= 0, (5.1)

where S + I + R = p (p being the total population), S(0) = So > 0, I (0) = Io > 0 and R(0) = 0, k1 > 0 is the
infection rate and k2 > 0 is the death rate.

A crucial question is, given k1, k2, So and Io, whether the infection will spread or not, and if it does, how it develops
with time, and crucially when it starts to decline. Clearly, from d I

dt = k1SI − k2 I , we have

d I

dt


t=0

= Io(r So − k2), (5.2)

where d I
dt |t=0 > 0 if So > k1/k2 and d I

dt |t=0 < 0 if So < k1/k2. If So < k1/k2, then d S
dt = −k1SI implies d S

dt < 0
and d I

dt |t=0 = Io(r So − k2) < 0 for all t ≥ 0, in which case I0 > I (t) → 0 as t → ∞, and so the infection dies
out; that is no epidemic can occur. On the other hand, if So > k1/k2, then I (t) initially increases, and we have an
“epidemic”. The term “epidemic” means that I (t) > Io for some time t > 0. Thus, in summary, we have a “threshold”
phenomenon:

• (a) If S0 > S∗
= k1/k2 an epidemic will occur,

• (b) If S0 < S∗
= k1/k2 no epidemic will occur.

The parameter k1/k2 is sometimes called the relative removal rate, while its reciprocal is called the infectious contact
rate. Using agent based methods, more complex features, such as spread of disease/epidemics and emergent age-
structuring of populations, can easily be incorporated. For example, if a susceptible individual is near an infected one,
then they become infected. The lifespan of an infected person, after contraction of the disease, is Ti . In the appendix,
an algorithm for systematic parameter determination, based on genetic algorithms, is provided.

Another extension to the overall modeling is to provide more detail on the movement of the agents. In the
model described in the body of the paper, the offspring were placed around the spatial location of the parent.
However, we could have allowed for them (as well as the parents) to move according to more physical rules. For
example, swarm-like movement to avoid predators is often advantageous for biological groups. This behavior is often
decentralized, which reduces the group vulnerability, and makes the decision making is relatively simple and rapid
for each individual. The overall behavior is however quite sophisticated. Modeling of this sort dates back, at least, to
Breder (1952) [9]. The usual approach to modeling such systems is to use a combination of short-range and long-range
interaction forces (Gazi and Passino [10], Bender and Fenton [11], Kennedy and Eberhart [12] and Zohdi [13,14]).
Early approaches that rely on decentralized organization can be found in Beni [15], Brooks [16], Dudek et al. [17],
Cao et al. [18] and Liu and Passino [19]. However, there are alternative rule-driven swarms where the interaction is
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not governed by forces, but by proximal instructions such as: (a) if a fellow swarm agent gets close to me, attempt
to retreat as far as possible, (b) follow the leader, (c) stay in clusters, etc. For example, ant colonies (Bonabeau
et al., [20]) exhibit foraging-type behavior, in addition to the trail-laying-trail-following mechanism for finding food
sources, where they deposit a chemical substance, called pheromone, which decays over time. The fellow swarm
agents detect paths with a high pheromone concentration (where the food source is highly concentrated) and follow
them (Kennedy and Eberhart [12] and Bonabeau et al. [20], Dorigo et al., [21], Bonabeau et al. [20], Bonabeau et al.
[22] and Fiorelli et al. [23]). For certain swarms, the “visual field” of the individual agents may play a significant
role, while in others, this is a non-issue, for example if the agents are robots or UAVs where the communication is
electronic. Still, in some systems, agents interact with a specific set of swarm agents, regardless of whether they are
far away (Feder [24]). For example, based on a number of careful observations, Starlings (Sturnus vulgaris), Ballerini
et al. [25] conclude, that such birds communicate with a certain number of birds surrounding it, regardless of the
distance away, attributing this to a perceptual limit in of the number of objects that they can track (the sixth or seventh
nearest neighbor). These issues are currently under investigation by the author.
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Appendix A. Rule parameter identification

As with all mathematical models, the identification of parameters is important. Typically, for the class of problems
considered in this work, the corresponding formulations depend in a nonconvex and nondifferentiable manner
on the system parameters. Classical gradient-based deterministic optimization techniques are not robust, due to
difficulties with objective function nonconvexity and nondifferentiability. Classical gradient-based algorithms are
likely to converge only toward a local minimum of the objective functional if an accurate initial guess to the global
minimum is not provided. Also, usually it is extremely difficult to construct an initial guess that lies within the (global)
convergence radius of a gradient-based method. These difficulties can be circumvented by the use of a certain class
of nonderivative search methods, usually termed “genetic” algorithms (GA), before applying gradient-based schemes.
Genetic algorithms are search methods based on the principles of natural selection, employing concepts of species
evolution, such as reproduction, mutation and crossover. Implementation typically involves a randomly generated
population of fixed-length elemental strings, “genetic information”, each of which represents a specific choice of
system parameters. The population of individuals undergo “mating sequences” and other biologically-inspired events
in order to find promising regions of the search space. There are a variety of such methods, which employ concepts of
species evolution, such as reproduction, mutation and crossover. Such methods primarily stem from the work of John
Holland (Holland [26]). For reviews of such methods, see, for example, Goldberg [27], Davis [28], Onwubiko [29],
Kennedy and Eberhart [12] and Goldberg and Deb [30].

Adopting the approaches found in Zohdi [13], a genetic algorithm has been developed to treat nonconvex inverse
problems involving various aspects of multiobject mechanics. The central idea is that the system parameters form a
genetic string and a survival of the fittest algorithm is applied to a population of such strings. The overall process is
(a) A population (S agents in total) of different parameter sets are generated at random within the parameter space,
each represented by a (“genetic”) string of the system (N ) parameters, (b) The performance of each parameter set is
tested, (c) The parameter sets are ranked from top to bottom according to their performance, (d) The best parameter
sets (parents) are mated pairwise producing two offspring (children), i.e. each best pair exchanges information by
taking random convex combinations of the parameter set components of the parents’ genetic strings and (e) The worst
performing genetic strings are eliminated, new replacement parameter sets (genetic strings) are introduced into the
remaining population of best performing genetic strings and the process (a–e) is then repeated. The term “fitness”
of a genetic string is used to indicate the value of the objective function. The most fit genetic string is the one with
the smallest objective function. The retention of the top fit genetic strings from a previous optimization generation
(parents) is critical, since if the objective functions are highly nonconvex (the present case), there exists a clear
possibility that the inferior offspring will replace superior parents. When the top parents are retained, the minimization
of the cost function is guaranteed to be monotone (guaranteed improvement) with increasing optimization generations.
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There is no guarantee of successive improvement if the top parents are not retained, even though nonretention of
parents allows more new genetic strings to be evaluated in the next optimization generation. Numerical studies
conducted by the author imply that, for sufficiently large populations, the benefits of parent retention outweigh this
advantage and any disadvantages of “inbreeding”, i.e. a stagnant population. For more details on this “inheritance
property” see Davis [28] or Kennedy and Eberhart [12]. In the upcoming algorithm, inbreeding is mitigated since,
with each new optimization generation, new parameter sets, selected at random within the parameter space, are added
to the population. Previous numerical studies of the author (Zohdi [13]) have indicated that not retaining the parents
is suboptimal due to the possibility that inferior offspring will replace superior parents. Additionally, parent retention
is computationally less expensive, since these parameter sets do not have to be re-evaluated in the next optimization
generation. For example, such algorithms can be used to search for parameter sets yield populations having similar
stable sizes after many conflicts. Mathematically speaking, this couple be expressed by writing minΛ Π (Λ), where

Π (Λ) =
|p1 − p2|

|p1 + p2|
, (A.1)

where Λ
def
= {d(1−2)

i j , s(1−1)
i j , s(2−2)

i j , w(1), w(2), etc.} and where p1 and p2 are populations after a set number of conflict
periods for a given Λ. The goal would be to find the sets of Λ that minimize Π , other than the trivial parity parameter
set, namely that both of the populations have identical characteristics. In particular, one could determine what factors
(parameters) can counterbalance one another for population coexistence. An implementation of such optimization
ideas follows (Zohdi [13]):

• STEP 1: Randomly generate a population of S starting genetic strings, Λi , (i = 1, . . . , S):

Λi def
= {Λi

1,Λ
i
2,Λ

i
3,Λ

i
4, . . . , . . .Λ

i
N }

• STEP 2: Compute fitness of each string Π (Λi ), (i = 1, . . . , S)
• STEP 3: Rank genetic strings: Λi , (i = 1, . . . , S)
• STEP 4: Mate nearest pairs and produce two offspring, (i = 1, . . . , S)

λi def
= Φ(I )Λi

+ (1 − Φ(I ))Λi+1, λi+1 def
= Φ(I I )Λi

+ (1 − Φ(I I ))Λi+1

• NOTE: Φ(I ) and Φ(I I ) are random numbers, such that 0 ≤ Φ(I ),Φ(I I )
≤ 1, which are different for each

component of each genetic string
• STEP 5: Kill off bottom M < S strings and keep top K < N parents and top K offspring (K offspring +

K parents + M = S)
• STEP 6: Repeat STEPS 1–6 with top gene pool (K offspring and K parents), plus M new, randomly generated,

strings
• OPTION: Rescale and restart search around best performing parameter set every few optimization generations
• OPTION: We remark that gradient-based methods are sometimes useful for post-processing solutions found with

a genetic algorithm, if the objective function is sufficiently smooth in that region of the parameter space. In other
words, if one has located convex portion of the parameter space with a global genetic search, one can employ
gradient-based procedures locally to minimize the objective function further. In such procedures, in order to obtain
a new directional step for Λ, one must solve the following system, [H]{∆Λ} = −{g}, where [H] is the Hessian
matrix (N × N ), where {∆Λ} is the parameter increment (N × 1), and {g} is the gradient (N × 1). We shall
not employ this second (post-genetic) stage in this work. Reviews of these methods can be found in the texts of
Luenberger [31] and Gill, Murray and Wright [32].

To compute the fitness of a parameter set one must go through the procedure above, requiring a full-scale simulation.
It is important to scale the system variables, for example, to be positive numbers and of comparable magnitude, in
order to avoid dealing with large variations in the parameter vector components. Typically, for populations with a finite
number of agents, there will be slight variations in the performance for different random starting configurations. In
order to stabilize the objective function’s value with respect to the randomness of the starting configuration, for a given
parameter selection (Λ), a regularization procedure is applied within the genetic algorithm, whereby the performances
of a series of different random starting configurations are averaged until the (ensemble) average converges, i.e. until

the following condition is met:
 1

Z+1

Z+1
i=1 Π (i)(ΛI ) −

1
Z

Z
i=1 Π (i)(ΛI )

 ≤ T O L
 1

Z+1

Z+1
i=1 Π (i)(ΛI )

, where

index i indicates a different starting random configuration (i = 1, 2, . . . , Z ) that has been generated and Z indicates
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the total number of configurations tested. In order to implement this in the genetic algorithm, in STEP 2, one simply
replaces compute with ensemble compute, which requires a further inner loop to test the performance of multiple
starting configurations. Similar ideas have been applied to other types of randomly dispersed multibody systems in
Zohdi [13].

Appendix B. Continuum formulations of spatio-temporally coupled models

In order to illustrate a classical continuum spatio-temporal formulation of competing populations, in this case
microbial cells and chemical regulators, following Zohdi [33], a spatio-temporal system constructed, comprised of
two conservation laws:

• Microbial cell proliferation (p1 = c): which is comprised of (a) rate of change of microbial cells, (b) cellular
migration, (c) cellular proliferation controlled by a cell mitosis regulating chemical and (d) cell apoptosis.

• Environmental chemical regulator (p2 = s): which is comprised of (a) rate of change of the microbial cell
mitosis chemical regulator, (b) regulator diffusion, (c) regulator production by cells and (d) regulator decay.

To simplify things, we consider infinitesimal deformations of the medium (̇) =
∂()
∂t |. In other words, the domain

does not change its shape or geometry with changes in concentration. The microbial cell concentration in an arbitrary
volume of material denoted ω, consists of

d

dt


ω

c dω  
storage

=
∂

∂t


ω

c dω = −


∂ω

m(c) · n da  
migration

+


ω

r(s) dω  
production

−


ω

τ(c) dω  
apoptosis

, (B.1)

where c is a concentration (storage) term, −m · n is an inward normal migration flux term, r(s) is a proliferation term,
and τ(c) is a cell apoptosis term and

d

dt


ω

s dω  
storage

=
∂

∂t


ω

s dω = −


∂ω

f (s) · n da  
diffusion

+


ω

p(c) dω  
production

−


ω

γ (s) dω  
decay

, (B.2)

where s is the cell mitosis regulator concentration, −f ·n is an inward normal migration flux term, p(c) is a production
term and γ (s) is a regulator loss term. After using the divergence theorem on the flux terms, since the volume ω is
arbitrary, one obtains a diffusion–reaction model in strong form (assuming a Fickian-type law, m = −D · ∇c and
f = −K · ∇s)

∂c

∂t
= ∇ · D · ∇c + r(s) − τ(c) (B.3)

and simultaneously the balance of a mitosis regulating chemical (s)

∂s

∂t
= ∇ · K · ∇s + p(c) − γ (s). (B.4)

There is a vast amount of literature on the construction of the functions r(s), τ(c), p(c) and γ (s) for specific types
of problems, such as wound healing. See Murray [1] for an extensive review, with early experimental studies dating
back at least to Lindquist [34] Van den Brenk [35], Crosson et al. [36], Zieske et al. [37], Franz et al. [38] and
Sherratt and Murray [39]. Such a coupled model can represent a variety of biological systems, such as growth in
biological scaffolding, proliferation of damaged cellular tissue, etc. However, for the reasons outlined in the body
of the text, such models computationally expensive and of limited physical usefulness for true, complex, population
dynamics studies. However, the modeling of outlined here has a close similarity to multicomponent diffusion–reaction
industrial processes, where it is quite useful and enjoys wide usage in engineering. We refer the reader to Zohdi
[33,40–43] for more details.
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