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Abstract The objective of this paper is to focus on one of

the ‘‘building blocks’’ of additive manufacturing tech-

nologies, namely selective laser-processing of particle-

functionalized materials. Following a series of work in

Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002;

Philos Trans R Soc Math Phys Eng Sci 361(1806):

1021–1043, 2003; Comput Methods Appl Mech Eng 193

(6–8):679–699, 2004; Comput Methods Appl Mech Eng

196:3927–3950, 2007; Int J Numer Methods Eng 76:1250–

1279, 2008; Comput Methods Appl Mech Eng 199:79–101,

2010; Arch Comput Methods Eng 1–17. doi:10.1007/

s11831-013-9092-6, 2013; Comput Mech Eng Sci 98(3):

261–277, 2014; Comput Mech 54:171–191, 2014; J Manuf

Sci Eng ASME doi:10.1115/1.4029327, 2015; CIRP J

Manuf Sci Technol 10:77–83, 2015; Comput Mech

56:613–630, 2015; Introduction to computational

micromechanics. Springer, Berlin, 2008; Introduction to

the modeling and simulation of particulate flows. SIAM

(Society for Industrial and Applied Mathematics),

Philadelphia, 2007; Electromagnetic properties of multi-

phase dielectrics: a primer on modeling, theory and com-

putation. Springer, Berlin, 2012), a laser-penetration

model, in conjunction with a Finite Difference Time

Domain Method using an immersed microstructure

method, is developed. Because optical, thermal and

mechanical multifield coupling is present, a recursive,

staggered, temporally-adaptive scheme is developed to

resolve the internal microstructural fields. The time step

adaptation allows the numerical scheme to iteratively

resolve the changing physical fields by refining the time-

steps during phases of the process when the system is

undergoing large changes on a relatively small time-scale

and can also enlarge the time-steps when the processes are

relatively slow. The spatial discretization grids are uniform

and dense enough to capture fine-scale changes in the

fields. The microstructure is embedded into the spatial

discretization and the regular grid allows one to generate a

matrix-free iterative formulation which is amenable to

rapid computation, with minimal memory requirements,

making it ideal for laptop computation. Numerical exam-

ples are provided to illustrate the modeling and simulation

approach, which by design, is straightforward to compu-

tationally implement, in order to be easily utilized by

researchers in the field. More advanced conduction models,

based on thermal-relaxation, which are a key feature of

fast-pulsing laser technologies, are also discussed.

1 Introduction

Several industrialized countries have stressed the impor-

tance of advanced manufacturing and related innovative

research tools to their economies. This strategy has high-

lighted the role that advanced manufacturing technologies,

such as additive manufacturing, can play for developers of

next generation systems. Industries stand to make great

gains by understanding and adopting the latest tools and

processes in advanced manufacturing. The dramatic

increase in computational power for mathematical model-

ing and simulation opens the possibility that scientific

computing can play a significant role in the analysis of

many emerging complex manufacturing processes. How-

ever, for this goal to be realized, a central objective is to
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develop computational tools which can allow engineers

and scientists to quickly design and analyze new additive

manufacturing processes, resulting in superior products,

produced at lower overall operational costs.

In many cases, these manufacturing processes may

involve complex multi-step stages which combine dis-

parate techniques such as (additive) deposition of complex

material onto a surface followed by laser processing of the

material in targeted regions, in order to create structures

that are very difficult to construct using classical manu-

facturing methods. One type of approach in additive

manufacturing is based on deposition of particulate mix-

tures of materials (essentially composites) onto substrates

and allowing them to cure, in order to build layers of

surface materials. Such materials are often referred to as

particle-functionalized material, whereby the particles are

added to a base binding material to add desired function.

The attractiveness of such an approach for large-scale

applications has been facilitated by the fact that huge

quantities of inexpensive, high-quality, particles for addi-

tive powder-based manufacturing processes, are readily

available, due to advanced materials processing techniques

such as (a) sublimation from a raw solid to a gas, which

condenses into particles that are recaptured (harvested),

(b) atomization of liquid streams into droplets by breaking

jets of metal, (c) reduction of metal oxides and (d) precise

comminution/pulverizing of bulk material. In addition to

the deposition of such material onto a substrate, there are a

number of related post-processes which make up a suc-

cessful overall additive manufacturing process. One key

component is laser processing, which utilizes high-inten-

sity beams to heat the material to desired temperatures

either to subsequently bond, soften, sinter, melt or ablate

(Fig. 1), in a very targeted manner. Laser-based heating is

quite attractive because of the degree of precision that it

allows. Because of the monochromatic and collimated

nature of lasers, they are an attractive, highly-controllable,

way to process materials1. The range of power of a typical

industrial laser is relatively wide, ranging from approxi-

mately 100–10,000 W. For example, carbon dioxide (CO2)

and yttrium aluminum garnett (YAG) lasers are commonly

used. Typically, the initial beam produced is in the form of

collimated (parallel) rays that are 1–2 mm apart, which are

then focussed with a lens onto a small focal point (ap-

proximately 50 mm away) of no more than about

0.00001 m in diameter.

Remark 1 In 2014, related print-like additive manufac-

turing technologies, employing deposition of particulate

materials, including ceramics, metals, plastics, organic, and

even biological materials were a 2.2 billion dollar industry,

with applications ranging from commercial manufacturing,

medical technology, art and academia.2 Applications

include, for example, optical coatings and photonics

(Nakanishi et al. [58]), MEMS applications (Fuller et al.

[27], Samarasinghe et al. [72] and Gamota et al. [28]) and

Biomedical devices (Ahmad et al. [4]). In terms of pro-

cessing techniques, we refer the reader to Sirringhaus et al.

[79], Wang et al. [85], Huang et al. [37], Choi et al. [14–17]

and Demko et al. [19, 20] for details. These types of

applications and associated technology are closely related

to those in the area of spray coatings, and we refer the

reader to the extensive works of Sevostianov and Kachanov

[74–76], Nakamura and coworkers: Dwivedi et al. [25], Liu

et al. [51, 52], Nakamura and Liu [59], Nakamura et al.

[60] and Qian et al. [67] and to Martin [53, 54] for the state

of the art in deposition technologies. We refer the reader to

the recent overview article by Huang et al. [36] on the wide

array of activities in the manufacturing community in this

area.

Remark 2 There are a variety of other techniques that

may be involved in an overall additive manufacturing

processes, such as: (a) electron beam melting, which is a

process where the deposited material is bonded together

layer per layer with an electron beam in a high vacuum,

(b) aerosol jetting, which directs streams of atomized

LASER

Fig. 1 A schematic of laser input applied to a particulate-function-

alized material

1 In particular with pulsing, via continuous beam chopping or

modulation of the voltage.

2 A rough market percentage breakdown is 30 % motor vehicles,

15 % consumer products, business 11 %, medical 9 and 35 % spread

across other fields. Three-dimensional printing was pioneered in 1984

by Hull [38] of the 3D-Systems Corporation.
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particles at high velocities towards a substrate and

(c) inkjet printing, which works by projecting small dro-

plets of ink towards a substrate through a small orifice by

pressure, heat, and vibration. The deposited material is then

heated by UV light or other means to rapidly dry.

1.1 Objectives of this Paper

One concern of manufacturers is the microstructural

defects generated in additively manufactured products,

created by imprecisely controlled heat affected zones,

brought on by miscalibration of the laser power needed for

a specific goal. For example, due to the rise of one par-

ticular branch of additive manufacturing, printed flexible

electronics, involving sensitive substrates, it has become

important to precisely understand how much laser-input is

needed. Furthermore, in many cases one may need to pulse

the laser, either for technological reasons, such as to avoid

overheating, or to activate certain thermal relaxation

effects, which are discussed later. In particular, because

many substrates can become thermally-damaged, for

example from thermal stresses, ascertaining the appropriate

amount of laser input is necessary. Thus, in order for

emerging additive approaches to succeed, one must draw

upon rigorous theory and computation to guide and

simultaneously develop design rules for upscaling to

industrial manufacturing levels. This motivates the present

analysis. The objective of this paper is to focus on one of

the ‘‘building blocks’’ of additive manufacturing tech-

nologies, namely the laser-processing of complex particu-

late-functionalized materials. This paper focusses on one

key component of an overall additive manufacturing pro-

cess-namely the subprocess of targeted laser energy input.

During the course of the analysis, key parameter groups are

identified in order to determine the relative contribution of

each type of physics. A thermo-mechanical continuum

formulation, utilizing a modified Beer–Lambert laser pen-

etration model is then developed and solved with a Finite

Difference Time Domain (FDTD) Method in conjunction

with an immersed microstructure method. Numerical

examples are provided to illustrate the model’s behavior,

which, by design, is straightforward to computationally

implement, in order to be easily utilized by researchers in

the field.

Remark Importantly, we note that within the last decade,

technological advances have enabled the reliable control of

ultrafast pulsed lasers to activate small-time scale heat

wave effects. These effects are often referred to as ther-

mally-relaxed ‘‘second-sound’’ effects, because of their

mathematical similarity to wave propagation in acoustics,

although normal sound waves are fluctuations in the den-

sity of molecules in a substance while thermally-relaxed

second-sound waves are fluctuations in the density of

phonons. Such phenomena are predicted by models which

introduce thermal relaxation times into heat-conduction

relations. The thermally-relaxed second-sound is a quan-

tum mechanical phenomenon in which heat transfer occurs

by wave-like motion, rather than by the more usual

mechanism of diffusion. This leads to a very high con-

finement of thermal energy in very targeted zones. Ther-

mally-relaxed phenomena can be observed in any system in

which most phonon–phonon collisions conserve momen-

tum, and can play a role when the time scale of heat input

is quite small. More advanced models, based on thermal-

relaxation, which are a key feature of fast-pulsing laser

technologies, are discussed in the summary.

2 Initial Analysis: Qualitative Behavior-Response
to Laser Input

In order to fully grasp the governing physical mechanisms

in the upcoming analysis, we first analyze a simplified

qualitative model, in order to determine their relative

contribution.

2.1 A Simplified Analysis

The most basic type of conduction model is the classical

Fourier-type:

qk ¼ �KK � rh; ð2:1Þ

where h is the temperature, qk is the conductive heat flux,

KK is the thermal conductivity. A balance of power,

momentarily ignoring the effects of deformation and stress

reads as

q _w ¼ qC
oh
ot

¼ �r � qk þ S; ð2:2Þ

where q is the mass density, w ¼ Cðh� hoÞ is the stored

thermal energy, ho is a reference temperature, C is the heat

capacity and S represents other sources, such as laser

energy input. In order to simplify the analysis, we consider

an isolated small spherical particle. We employ a lumped

mass model shown in Fig. 2 (a control volume inside the

dashed lines). We remark that the validity of using a

lumped thermal model for a particle, i.e. ignoring tem-

perature gradients and assuming a uniform temperature

within a particle, is dictated by the magnitude of the Biot

number. A small Biot number (significantly less than unity)

indicates that such an approximation is reasonable. The

Biot number for spheres scales with the ratio of particle

volume (V ¼ 4
3
pr3) to particle surface area (AS ¼ 4pr2),

V
AS

¼ r
3

(r is the particle radius), which indicates that a
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uniform temperature distribution is appropriate, since the

particle is considered small. The governing equation, given

by an overall energy balance (First Law of Thermody-

namics) is

_h ¼ KAS

MCh
ðhS � hÞ þ ð1 � RÞIiðtÞAL

MC
; ð2:3Þ

where M is the mass of the particle and h is a length-scale

for conduction (essentially the radius of the particle) and

• The absorbed incident optical radiation is IaðtÞAL ¼
ðIi � IrÞAL ¼ ð1 � RÞIiAL, where Ia is the absorbed

radiation per unit area, Ir ¼ RIi is the reflected

radiation, R is the reflectivity, Ii ¼ P=AB is the incident

radiation per unit area, P being the power (Watts), AB is

the area of the beam and AL is the area of the exposed

(laser irradiated) surface.

• The conduction to the surrounding is K
h
ðhS � hÞAS,

where h is the temperature of the material, hS is the

temperature of the body to which the material is

attached, AS is the area of the surrounding surface that

conducts heat, K is the effective conductivity and h is

the length scale over which the conduction occurs,

which will be taken to be the radius of the particle.

2.2 Solution Character

For simple cases, this model can be solved analytically, for

example for a constant laser input IiðtÞ ¼ Ii (assuming

hðt ¼ 0Þ ¼ hS)

hðtÞ ¼ hS þ
ð1 � RÞIiALh

KAS

1 � e�
KASt

MCh

� �
: ð2:4Þ

The relation above is important since it provides a quali-

tative relation that connects the temperature, to the laser

input, conductivity, contact area and time. For example, if

one set the desired temperature at a desired time to be

hðt�Þ ¼ h� one can solve for the laser input needed

I�;i ¼ ðh� � hSÞKAS

ð1 � RÞALh 1 � e�
KASt

�
MCh

� � : ð2:5Þ

We have the following observations:

• The rise time for the temperature is dictated by the ratio

of conduction to heat capacity, KAS

MCh
.

• At steady-state, e�
KASt

MCh ! 0, and

hðtÞ ¼ hS þ
ð1 � RÞIiALh

KAS

; ð2:6Þ

which indicates that the ratio of Ia ¼ ð1 � RÞIi to K
h

dictates the steady state temperature (assuming

AL � AS).

• For a highly conductive surrounding: K ! 1,

hðtÞ ¼ hS, where the conductive losses are instanta-

neous. This will draw heat away from the targeted zone.

• For a poorly conductive surrounding: K ! 0,

hðtÞ ¼ hS þ ð1�RÞIiALt

MC
, where the conductive losses are

zero. This will trap (maximize) heat in the targeted

zone.

2.3 Order of Magnitude Analysis

The ratios of the contributing terms are (leaving the

dimensions of the target and the laser-power as variables):

CONDUCTION

LASER� IRRAD:
¼ KðhS � hÞAS

hð1 � RÞIiAL

� Oð102ÞOð102ÞAS

ð1 � RÞIiALh

� Oð104Þ
ð1 � RÞIih ; ð2:7Þ

where the ratio of the areas is assumed to be of order unity

(AL � AS). Rewriting the irradiance per unit area in terms

of power input, ð1 � RÞIi ¼ P
AL

, yields

CONDUCTION

LASER� IRRAD:
� Oð104Þ

P h
AL

; ð2:8Þ

and thus since AL / ph2 (h is effectively the radius of the

particle)

LASER

LASER INPUT

CONDUCTION TO
SURROUNDINGS

Fig. 2 A schematic of laser input applied to a particulate composite

material
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CONDUCTION

LASER� IRRAD:
� Oð104Þh

P
: ð2:9Þ

For example, for an idealized spherical particle, we have

(Fig. 1)

• AS ¼ b4pr2, where 0� b� 1,

• AL ¼ pr2.

For r � h, this yields AL

h
� OðrÞ. Thus, for a small target,

for example r � 10�3 m, P � 103 W, then

CONDUCTION

LASER� IRRAD:
� Oð10�2Þ: ð2:10Þ

Thus, the laser input is 100 times larger than conduction.

3 Formulations for Particulate-Laden Continua

The preceding analysis was of a generic isolated particle

being irradiated by a laser and conducting heat with its

surroundings based on a balance of energy in conjunction

with Fourier-type conduction. To reliably extend this work,

to particulate-based continua (multiple particles in a

binding matrix), the spatial propagation of the thermal

fields through conduction, and the resulting stress fields,

require the use of spatial discretization techniques such as

the Finite Difference Time Domain Method. The specific

manufacturing scenario that we are interested in modeling

is a particulate-functionalized composite material which

experiences laser-pulsing in a targeted region. This covers

a wide range of applications in additive manufacturing. Of

particular interest is the resolution of thermal and residual

stresses. Accordingly, this section is concerned with the

computational characterization of the evolution of thermal

and stress fields, in materials with particulate-functional-

ized microstructure. The objective of this work is to

develop a straightforward computational framework that

researchers in the field can easily implement and use as a

computationally-efficient design tool. Generally speaking,

there is a thermo-mechanical multifield coupling present,

along with material changes associated with material

hardening, elasto-plasticity and mechanical damage.

Specifically, a recursively staggered, temporally-adaptive,

FDTD (Finite Difference Time Domain) scheme is devel-

oped to resolve the internal microstructural thermal and

mechanical fields, accounting for the simultaneous elasto-

plasticity and damage. The time step adaptation is con-

structed to allow the numerical scheme to iteratively

resolve the changing physical fields by reducing the time-

steps during phases of the process when the system is

undergoing changes on relatively small time-scales and

also to enlarge the time-steps when the processes are rel-

atively slow. The spatial discretization grids are uniform

and dense, with the complex microstructure being

embedded into the mesh. The regular grid allows one to

generate a matrix-free iterative formulation which is

amenable to rapid computation and minimal memory

requirements, making it ideal for laptop computation. The

presentation is broken into four main parts: (1) character-

ization of the laser input, (2) formulations for each field in

the model problem, identifying the coupling terms, (3)

iterative staggering schemes (including spatial and tem-

poral discretization) and (4) numerical examples for the

model problem. The approach builds on work found in

Zohdi [90–104] and then applies it to particle mixture

deposition systems.

Remarks In this section, we focus on the thermo-me-

chanical response of a particulate mixture. The initial

dynamic deposition process of multibody and inter-particle

collisions is outside the scope of the present work. How-

ever, we mention in passing that to model the dynamics of

particle systems, reduced-order particle-based or discrete

element-based models, which treat such systems as multi-

body dynamical groups, are often used. They are advan-

tageous in dealing with domains that break apart or

coalesce, as compared to traditional continuum based finite

difference and finite element methods, which have limita-

tions when dealing with dynamic discontinua. For reviews

see, for example, Duran [24], Pöschel and Schwager [65],

Onate et al. [62, 63], Rojek et al. [70], Carbonell et al. [13],

Labra and Onate [46], Leonardi et al. [47], Cante et al.

[12], Rojek [71], Onate et al. [64], Bolintineanu et al. [3],

Campello and Zohdi [10, 11], Avci and Wriggers [2] and

Zohdi [89–103]. In many cases, the deposition of these

materials is the first stage of a multistep process which may

involve, among other processes, compaction. Compaction

is also somewhat outside the scope of the present work, and

we refer the reader to Akisanya et al. [5], Anand and Gu

[6], Brown and Abou-Chedid [9], Domas [21], Fleck [26],

Gethin et al., [29], Gu et al. [32], Lewis et al. [48], Ransing

et al. [68], Tatzel [80] and Zohdi [89–103]

3.1 Laser Input

Selective laser processing/sintering, was pioneered by

Householder [35] in 1979 and Deckard [18] in the mid-

1980’s.3 Generally, an overall technological goal is to

develop computational tools to accelerate the manufactur-

ing of printed electronics. Lasers can play a central role in

precisely processing these systems. To describe the laser-

target interaction, the following must be accounted for: (a)

absorption of laser energy input, (b) beam interference

3 A closely related method, Electron Beam Melting, fully melts the

material and produces dense solids that are void free.
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(attenuation) from the heterogeneous media and (c) heat

transfer by conduction. There are varying degrees of

sophistication for modeling the heat input from a laser, for

example (Zohdi [89–103]). We utilize the Beer–Lambert

law, whereby one performs an overall power balance

(Fig. 6):

ðI þ DIÞ � I þ LDz ¼ 0 ) dI

dz
¼ L � �aI; ð3:1Þ

where L � aI is the absorbed irradiance (per unit area)

from the laser and z ¼ z� is the penetration location depth,

which is solved to yield

Iðz�Þ ¼ Ioe
�
R z�

0
adz

: ð3:2Þ

This is then incorporated into the First Law of

Thermodynamics.

Remark We could perform a discretization of the irradi-

ant beam into rays and perform a full-blown ray-tracking

scheme (see Zohdi [89–103]), or perform a discretization

of the beam into it’s electromagnetic field components via

Maxwell’s equations (see Zohdi [89–103]). While such

approaches provide extremely detailed field information at

the smallest scales, they are extraordinarily computation-

ally expensive, and for the applications in this work,

unwarranted. The Beer–Lambert framework provides an

approach that is useful for practical computation. In such

an approach, one can easily introduce nonuniform beam

profiles, for example

IðrÞ ¼ Iðr ¼ 0Þe�cjjr�rojj; ð3:3Þ

where jjr� rojj is the distance from the center of the

incident beam line. In the case of c ¼ 0 we recapture a flat

beam, IðrÞ ¼ Iðr ¼ 0Þ.

3.2 Transient Thermo-Mechanical Coupled Fields

Following, Zohdi [89–103], we consider a model problem

of a particulate composite (Fig. 1). The essential field

equations and simplifying assumptions that will be used

during the analysis are provided next.

3.2.1 Balance of Linear Momentum

We consider a balance of linear momentum governed by

rx � rþ f ¼ q
d2u

dt2
; ð3:4Þ

in regimes where infinitesimal deformations are appro-

priate, where r is the Cauchy stress, f are body forces, q is

the material density and u is the displacement. Consistent

with the infinitesimal deformation approximation we write

rx � rX and
dðÞ
dt

� oðÞ
ot
jX , where X are the referential

coordinates, x are the current coordinates. We consider a

damaged, elasto-plastic, isotropic constitutive law given by

r ¼ DEE0 : ð�� �h � �pÞ: ð3:5Þ

Under infinitesimal deformation framework, the balance of

linear momentum becomes (q � qo)

rX � ðDEE0 : ð�� �h � �pÞÞ þ f ¼ qo
o2u

ot2
ð3:6Þ

with infinitesimal strains given by � ¼ 1
2
ðrXuþ ðrXuÞTÞ,

thermal strains given by �h ¼
def

c � ðh� h0Þ1 and plastic

strains given by �p, generated by the following unilateral

conditions (a� 0)

jjr0jj[ ry ) _f ¼ a
jjr0jj
ry

� 1

� �
ð3:7Þ

and

jjr0jj � ry ) _f ¼ 0 ð3:8Þ

where _�p ¼ _f r0

jjr0jj and r0 ¼ r� trr
3
1 is the deviatoric stress.

Here, the (isotropic) damaged elasticity tensor is EE ¼ DEE0,

where EE0 represents the ‘‘virgin’’ isotropic undamaged

material, 0�D� 1 is the scalar continuity (isotropic dam-

age) parameter (Kachanov [41]), Dðt ¼ 0Þ ¼ 1 indicates the

initial undamaged state and D ! 0 indicates a completely

damaged state. The damage arising from mechanical and

thermal sources is modeled as being governed by evolution

over-stress functions of the form (b� 0)

jjr0jj[ rd ) _D ¼ b
jjr0jj
rd

� 1

� �
ð3:9Þ

and

jjr0jj � rd ) _D ¼ 0; ð3:10Þ

We note that the rate constants a and b and the critical

stresses ry and rd are potentially spatially-variable.

Clearly, further evolution laws can be written for other

material property changes, such as the thermal conductiv-

ity, although only changes in the mechanical property EE are

considered during the formulations to follow.4 In the case

of material isotropy

r ¼ D k0trð�� �h � �pÞ1þ 2l0ð�� �h � �pÞ
� �

; ð3:11Þ

where k0 is the undamaged Lame parameter and l0 is the

undamaged shear modulus.

4 For further details on these types of phenomenological (damage)

formulations, the interested reader is referred to the seminal work of

Kachanov [41].
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3.2.2 Balance of Energy

The interconversions of various forms of energy (me-

chanical, thermal, etc) in a system are governed by the first

law of thermodynamics,

q _w� r : rx _uþrx � q� qz ¼ 0; ð3:12Þ

where w is the stored energy per unit mass, which is a

function of the temperature (h) and elastic strain,

(�e ¼ �� �h � �p), q is heat flux, and qz is the rate of

energy absorbed from sources (for laser input, qz ¼ aI).

We employ the following for the stored energy (assuming

infinitesimal deformations)

qw ¼ W � 1

2
ð�� �h � �pÞ : E : ð�� �h � �pÞ þ qCh;

ð3:13Þ

which implies

q _w ¼ _W ¼ ð _�� _�h � _�pÞ : EE : ð�� �h � �pÞ

þ 1

2
ð�� �h � �pÞ : _EE : ð�� �h � �pÞ þ qC _hþ q _Ch

ð3:14Þ

and thus the first law becomes

qC _h ¼r : ð _�h þ _�pÞ �
1

2
ð�� �h � �pÞ : _EE : ð�� �h � �pÞ

þ rX � ðKK � rXhÞ þ qz� q _Ch

ð3:15Þ

where Fourier’s law, q ¼ �KK � rXh, has been used.

3.3 Iterative Staggering Scheme

Following Zohdi [89–103], we now develop a staggering

solution framework to solve the coupled systems of inter-

est. The general methodology is as follows (at a given time

increment): (1) each field equation is solved individually,

‘‘freezing’’ the other (coupled) fields in the system,

allowing only the primary field to be active and (2) after

the solution of each field equation, the primary field vari-

able is updated, and the next field equation is treated in a

similar manner. For an ‘‘implicit’’ type of staggering, the

process can be repeated in an iterative manner, while for an

‘‘explicit’’ type, one moves to the next time step after one

‘‘pass’’ through the system. We will employ implicit

staggering. Specifically, for the thermo-mechanical system

under consideration, consider an abstract setting, whereby

one solves for the mechanical field, assuming the thermal

field is fixed (L is a time-step counter and K is a staggering-

step counter),

A1ðuLþ1;K ; hLþ1;K�1Þ ¼ B1ðuLþ1;K�1; hLþ1;K�1Þ ð3:16Þ

then one solves for the thermal fields, assuming the

mechanical field fixed,

A2ðuLþ1;K ; hLþ1;KÞ ¼ B2ðuLþ1;K ; hLþ1;K�1Þ ð3:17Þ

where the only underlined variable is ‘‘active’’ at that stage

of the process. Within the staggering (iterative) scheme,

implicit time-stepping methods (with time step size adap-

tivity) will be used throughout the upcoming analysis

(described shortly). The process is driven by minimizing

nondimensional relative iterative coupling error (of both

fields) within a time-step (difference between successive

iterations). A tolerance check determines whether the

iterations should continue, or if the time steps should be

adaptively reduced to increase the rate of convergence. The

time steps can be increased if convergence occurs too

quickly, thus allowing larger time-steps and faster simu-

lations for a given iterative error tolerance. The details of

this process are discussed shortly. Generally speaking, if a

recursive staggering process is not employed (an explicit

coupling scheme), the staggering error can accumulate

rapidly. However, simply employing extremely small time

steps, smaller than needed to control the discretization

error, in order to suppress a (nonrecursive) staggering

process error, can be computationally inefficient. There-

fore, the objective of the next subsection is to develop a

strategy to adaptively adjust, in fact maximize, the choice

of the time step size in order to control the staggering error,

while simultaneously staying below a critical time step size

needed to control the discretization error. An important

related issue is to simultaneously minimize the computa-

tional effort involved. We now develop a staggering

scheme by extending an approach found in the work of

Zohdi [89–103].

Remark 1 The symbol jj � jj will signify the L2ðXÞ-norm

throughout this work. The nondimensional error metric for

the mechanical field is (where we assume that the

denominator is nonzero)

-K
u ¼def jjuLþ1;K � uLþ1;K�1jj

jjuLþ1;K � uLjj ; ð3:18Þ

and for the thermodynamic field

-K
h ¼def jjhLþ1;K � hLþ1;K�1jj

jjhLþ1;K � hLjj
: ð3:19Þ

Thereafter, we select the maximum nondimensionalized

error for adaptivity

-�;K ¼def
maxð-K

u ;-
K
h Þ; ð3:20Þ
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Remark 2 Staggering schemes are widely used in the

computational mechanics literature, dating back, at least, to

Zienkiewicz [87] and Zienkiewicz et al. [88]. For in depth

overviews, see the works of Lewis and Schrefler (Lewis et al.

[49] and Lewis and Schrefler [50]]) and a series of works by

Schrefler and collaborators: Schrefler [73], Turska and

Schrefler [82], Bianco et al. [8] and Wang and Schrefler [83].

3.3.1 Spatial Discretization of the Fields

Numerically, the components of the gradient of functions

such as u and h are approximated by central finite differ-

ence stencils of the basic form (Fig. 11):

oui

oxj
jx �

uiðxj þ DxjÞ � uiðxj � DxjÞ
2Dxj

ð3:21Þ

for each of the ðx1; x2; x3Þ-directions, in order to form the

terms needed in rxu and rx � r. This is a second-order

accurate stencil. For a generic second order scheme spatial

derivative, such as

or
ox

jx �
rðxþ Dx

2
Þ � rðx� Dx

2
Þ

Dx
; ð3:22Þ

where generically, for example with an arbitrary material

coefficient aðxÞ ¼ kðxÞ or aðxÞ ¼ lðxÞ (Fig. 3):

rðxþ Dx
2
Þ � aðxþ Dx

2
Þ uðxþ DxÞ � uðxÞ

Dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ou
ox
j
xþDx

2

ð3:23Þ

and

rðx� Dx
2
Þ � aðx� Dx

2
Þ uðxÞ � uðx� DxÞ

Dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ou
ox
j
x�Dx

2

ð3:24Þ

where

aðxþ Dx
2
Þ � 1

2
ðaðxþ DxÞ þ aðxÞÞ; ð3:25Þ

and

aðx� Dx
2
Þ � 1

2
ðaðxÞ þ aðx� DxÞÞ: ð3:26Þ

These approximations are made for all components and

combinations in rx � r. The mixed derivatives are derived

in a similar manner in ‘‘Appendix 1’’. Similarly, for a

second order scheme spatial derivatives in the heat

conduction

oq

ox
jx �

qðxþ Dx
2
Þ � qðx� Dx

2
Þ

Dx
; ð3:27Þ

where (in conjunction with Fourier’s Law)

qðxþ Dx
2
Þ � �Kðxþ Dx

2
Þ hðxþ DxÞ � hðxÞ

Dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
oh
ox
j
xþDx

2

ð3:28Þ

and

qðx� Dx
2
Þ � �Kðx� Dx

2
Þ hðxÞ � hðx� DxÞ

Dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
oh
ox
j
x�Dx

2

ð3:29Þ

where

Kðxþ Dx
2
Þ � 1

2
ðKðxþ DxÞ þKðxÞÞ; ð3:30Þ

and

Kðx� Dx
2
Þ � 1

2
ðKðxÞ þKðx� DxÞÞ: ð3:31Þ

These approximations are made for oq1

ox1
, oq2

ox2
and oq3

ox3
, in order

to form the terms needed in rx � q. This is done at each

node in the grid. See ‘‘Appendix 1’’ for more details.

3.4 Temporal Discretization of Fields

3.4.1 Mechanical Field

For the mechanical field (infinitesimal deformation for-

mulation) we write

dv

dt
¼ ov

ot
¼ 1

q
rX � rþ fð Þ ¼def

W: ð3:32Þ

We discretize for time = t þ /Dt, and using a trapezoidal

‘‘/� scheme’’ (0�/� 1, see ‘‘Appendix 3’’)

vðtþDtÞ� vðtÞ
Dt

�Wðtþ/DtÞ�/WðtþDtÞþð1�/ÞWðtÞ:

ð3:33Þ

Rearranging, yields

w

w w

w

w

ww

i,j,k i+1,j,k

i,j+1,k

i,j,k−1

i,j,k+1

i−1,j,k

i,j−1,k

Fig. 3 A typical three dimensional finite-difference stencil for a field

w(x, y, z) (see Zohdi [89–103])
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vðt þ DtÞ � vðtÞ þ Dt /Wðt þ DtÞ þ ð1 � /ÞWðtÞð Þ
ð3:34Þ

where the previously introduced spatial discretization is

applied to the terms in W (rx � r). Since this is a second-

order system, the procedure is then repeated to determine

the displacement field u (see ‘‘Appendix 3’’)

uðtþDtÞ ¼ uðtÞ þ vðtþ/DtÞDt
¼ uðtÞ þ /vðtþDtÞ þ ð1�/ÞvðtÞð ÞDt;

ð3:35Þ

or more explicitly

uðt þ DtÞ ¼ uðtÞ þ vðtÞDt þ /ðDtÞ2Wðt þ /DtÞ: ð3:36Þ

The term Wðt þ /DtÞ can be handled in two main ways:

• Wðt þ /DtÞ � Wð/uðt þ DtÞ þ ð1 � /ÞuðtÞÞ or

• Wðt þ /DtÞ � /Wðuðt þ DtÞÞ þ ð1 � /ÞWðuðtÞÞ.
The differences are quite small between either of the

above, thus, for brevity, we choose the latter. Therefore,

uðt þ DtÞ ¼ uðtÞ þ vðtÞDt
þ /ðDtÞ2 /Wðt þ DtÞ þ ð1 � /ÞWðtÞð Þ:

ð3:37Þ

When / ¼ 1, then this approach can be considered to be a

(implicit) Backward Euler scheme, which is very

stable (very dissipative) and OððDtÞ2Þ locally in time,

while if / ¼ 0, the scheme can be considered as a (explicit)

Forward Euler scheme, which is conditionally stable and

OððDtÞ2Þ locally in time and if / ¼ 0:5, then the

scheme can be considered as a (implicit) Midpoint scheme,

which is marginally stable and ÔððDtÞ2Þ ¼ OððDtÞ3Þ
locally in time. The dependent plastic and damage vari-

ables are also integrated in a similar manner

�ðt þ DtÞ ¼ �ðtÞ þ Dt / _�ðt þ DtÞ þ ð1 � /Þ _�ðtÞð Þ ð3:38Þ

and

Dðt þ DtÞ ¼ DðtÞ þ Dt / _Dðt þ DtÞ þ ð1 � /Þ _DðtÞ
� �

:

ð3:39Þ

3.4.2 Thermal Fields

For the thermal field we write

oh
ot

¼ 1

qC

�
r : ð _�hþ _�pÞ�

1

2
ð�� �h� �pÞ :

_EE : ð�� �h� �pÞþrX � ðKK �rXhÞþqz�q _Ch

�
¼def
Y:

ð3:40Þ

We discretize for around the time = tþ/Dt, yielding

hðt þ DtÞ � hðtÞ þ Dt /Yðt þ DtÞ þ ð1 � /ÞYðtÞð Þ;
ð3:41Þ

where the previously introduced spatial discretization is

applied to the terms in Y.

3.5 The Overall Solution Scheme

In order to construct a solution, the algorithm is as follows:

• (1) Spatio-temporal discretization Construct derivative

terms such as

ouðxÞ
ox

� uðxþ DxÞ � uðx� DxÞ
2Dx

; etc ð3:42Þ

and insert into the governing equations. This leads to a

system of coupled equations, for each node ((i, j, k) in

Fig. 4), which are cast in the following (implicit/re-

cursive) form (which are a recasting of the abstract

system (Eqs. 3.16–3.17))

uðt þ DtÞ ¼ Fðuðt þ DtÞ; hðt þ DtÞ; . . .Þ; ð3:43Þ

and

hðt þ DtÞ ¼ Yðuðt þ DtÞ; hðt þ DtÞ; . . .Þ: ð3:44Þ

• (2) System staggering Compute u-field with h-fields

fixed, then compute h-field with u-fields fixed, etc, and

iterate at time interval Lþ 1, K ¼ 1; 2. . . for

uLþ1;K ¼ FðuLþ1;K�1; hLþ1;K�1Þ; ð3:45Þ

and

hLþ1;K ¼ YðuLþ1;K ; hLþ1;K�1Þ; ð3:46Þ

Solving each of the above Eqs. (3.45 and 3.46), with

the respective other fields fixed, can be achieved in a

variety of ways, for example iteratively or by direct

(Gaussian-type) solution methods (Fig. 4). For exam-

ple, an interior iterative loop, within the staggering loop

(within a time-step), can be used to update the solution

to solve the individual field, for example the mechan-

ical field, before moving to the next field (for example

the thermal field). Those internal iterations can be

performed until that individual field converges. This

can then be repeated for the next field. This would then

complete one staggering iteration. There are of course

many possible variants of this process. In theory, one

could even simply perform an explicit update (no

recursion). This is discussed further in the remarks that

follow.

• (3) Compute error measures: -�;K ¼def
maxð-K

u ;-
K
h Þ, i ¼

1; . . .; nodes in the system.

• (4a) If tolerance is met, -�;K �Ctol and K �Kd, then:
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(1) Increment time forward: t ¼ t þ Dt,

(2) Construct new time step: ðDtÞnew ¼ UKðDtÞold
,

where UK ¼def ðCtol
-�;0

Þ
1

pKd

ð-�;K
-�;0

Þ
1
pK

 !

(3) Select Dt ¼ minððDtÞlim; ðDtÞnewÞ and go to (1)

• (4b) If tolerance is not met, -�;K [Ctol and K ¼ Kd,

then construct (refine) new time step: ðDtÞnew ¼def

UKðDtÞold
, where UK ¼def ðCtol

-�;0
Þ

1
pKd

ð-�;K
-�;0

Þ
1
pK

 !
and go to (1). This

time-scaling relation is derived in ‘‘Appendix 2’’.

At a given time, once the process is complete, then the time is

incremented forward and the process is repeated. The overall

goal is to deliver solutions where the iterative error is con-

trolled and the temporal discretization accuracy dictates the

upper limit on the time step size (Dtlim). Clearly, there are

various combinations of solution methods that one can choose

from. For example, for the overall field coupling, one may

choose implicit or explicit staggering and within the staggering

process, either implicit (0\/� 1) or explicit time-stepping

(/ ¼ 0), and, as mentioned previously in the case of implicit

time-stepping, iterative or direct solvers for the balance of

linearmomentum and the first law of thermodynamics (Fig. 4).

3.5.1 Algorithmic Observation 1

It is important to emphasize that one should use the previous

(converged) time step’s solution as the starting guess for the

next time step to obtain a ‘‘head-start’’ ðuK¼0ðt þ DtÞ ¼ uðtÞÞ.
When selecting a time step, one must balance accuracy con-

cerns and, simultaneously, stability issues.5 Clearly, the

smaller the time-step, the more stable the solution process,

however, more time steps implies more system evaluations.

Since the multifield staggering scheme iterates anyway,

implicit methods are preferred for the applications of interest.

As the physics changes, the field that is most sensitive (ex-

hibits the largest amount of relative nondimensional change)

dictates the time-step size. Because the internal system solvers

within the staggering scheme are also iterative and use the

previously converged solution as their starting value to solve

the system of equations, a field that is relatively insensitive at

given stage of the simulation will converge in a very few

internal iterations (perhaps even one).

3.5.2 Algorithmic Observation 2

Generally speaking, the solution to the individual field

equations progresses in a node by node fashion whereby, at

a node (i, j, k), for example for the mechanical field cal-

culations, one has in an abstract form

uðt þ DtÞ � FðuðtÞ; uðt þ DtÞ; hðtÞ; hðt þ DtÞÞ; ð3:47Þ

where the term on the lefthand side is updated and the

terms on the right are previous iterate (old) values. This

entails using the old values for all finite difference stencils

that eventually become updated only after the algorithm

completely traverse through the system, updating values,

node by node (no matrices need to be formed, Fig. 4).

There exist many methods to accelerate such computations,

such as Successive Over-Relaxation, based on the

pioneering work of Young [86]. For reviews, see Ames [1]

or Axelsson [7]. Note that for the mechanical field calcu-

lations the thermal field is instantaneously fixed, and are

updated only when it is to be solved, in the staggered

manner (fixing the mechanical variables). At the algebraic

equation solution level, after the individual field has been

solved, the entire solution is passed to the next field

equation, as described in the previous algorithm (Fig. 4).

This is a Jacobi-type scheme, whereby the updates are

made only after one complete system iteration, which is

UPDATE PLASTICITY AND DAMAGE

CONVERGED?

YES NO

STAGGERING−IMPLICIT

STAGGERING−EXPLICIT

GO TO NEXT TIME STEP

CHECK ERROR NORM

SOLVE ELASTO−PROBLEM
(MOMENTARILY DECOUPLED)

(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))

SOLVE THERMO−PROBLEM
FIRST LAW)(MOMENTARILY DECOUPLED 

(TIME−EXPLICIT OR TIME−IMPLICIT (ITERATIVE OR DIRECT SOLVER))

u

LINEAR MOMENTUM

Θ

SWEEP AND UPDATE SWEEP AND UPDATE

FIRST LAW

ITERATE

UPDATE PLASTICITY AND DAMAGE

Fig. 4 The overall coupled staggering (left) solution and the matrix-free approach (right), following Zohdi [89–103]

5 Typically, the number of iterations needed to solve the coupled

system, if an iterative scheme is used, increases with the time step size

and the value of /.
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easier to address theoretically, as opposed to a Gauss-Sei-

del type method, which involves immediately using the

most current field values, when they become available. The

Jacobi method is easily parallelizable, if desired. In other

words, the calculation for each node is (momentarily)

uncoupled, with the updates only coming at the end of an

iteration. Gauss-Seidel, since it requires the most current

updates, couples the nodal calculations immediately.

4 A Specific Numerical Example-Controlled
Heating

As mentioned at the outset of this paper, the specific manu-

facturing scenario that we are interested in modeling is a

mixture which experiences laser-pulsing in targeted regions to

induce a desired temperature field locally. This covers a wide

range of applications in additive manufacturing. For illustra-

tion purposes, in this example, we control the lateral and side

boundary conditions, set to be constant (thus laterally drawing

heat out of the overall system). The top boundary is flux-type

according to following: (a) if in the laser-zone

ðKK � rhÞ � n ¼ I ð4:1Þ

and (b) otherwise

ðKK � rhÞ � n ¼ 0: ð4:2Þ

In addition to the previously defined parameters, we have:

• Laser beam radius: RL ¼ 0:1L ¼ 0:00001 m,

• Laser strength (W=m2, Io ¼ 109), where:

Iðr; tÞ ¼ Ioe
�cojjr�rojj ðc1 þ c2

t

T
Þð1 þ sinð2pxt=TÞÞ

� �
;

ð4:3Þ

and x ¼ 10 s�1, co ¼ 0, c1 ¼ 0, c2 ¼ 100and T ¼
10�4.

• Absorption for the Beer–Lambert law:

Iðr; z; tÞ ¼ Iðr; tÞe�
R z�

0
a dz

; ð4:4Þ

where a ¼ a1e
�a2

ðhðxÞ�hoÞ
ho , for the matrix material: a1 ¼ 1,

a2 ¼ 0 and for the particular material a1 ¼ 100, a2 ¼ 0.

As a model problem, we consider a group of particles with

a smaller scale interstitial material that is assumed to be a

continuous phase. We generated a group of Np randomly

dispersed spherical particles, of equal size, embedded in a

cubical domain of dimensions, D� D� D. The particle

size was determined by a particle/sample size ratio, which

was defined via a subvolume size V ¼def D�D�D
Np

. The non-

dimensional ratio between the particle radii (b) and the

subvolume was denoted by L ¼def b

V
1
3

. The volume fraction

occupied by the particles can then be written as vp ¼def 4pL3

3
.

Thus, the total volume occupied by the particles denoted f,

can be written as f ¼ vpNpV . Large values of f[ 0:5 allow

for overlap. We used Np ¼ 100 particles (Fig. 5). This

sample size was determined by successively enlarging

sample until there were no significant changes in the

overall system response, for further enlargements. The

classical random sequential addition algorithm was used to

place nonoverlapping particles randomly into the domain

of interest (RSA; Widom [85]). The particles were then

enlarged from those locations and allowed to overlap.

Remark For higher volumes fractions, during the first

phase of this algorithm (particle placement), more sophis-

ticated algorithms, such as the equilibrium-based Metro-

polis algorithm can be used or methods based on

simultaneous particle flow and growth, found in Torquato

[81], Kansaal et. al [45] and Donev et. al [22, 23].

4.1 Sample Size Selection

In order to select a suitable sample that is statistically repre-

sentative (a RVE), we employ a ‘‘framing’’ method, whereby

the boundary conditions are applied (u and h) to the boundary

of a sample (Fig. 5), and an interior subsample is used to probe

what the material would experience without the direct influ-

ence of the applied boundary conditions. This approach avoids

introducing boundary layer effects into the interior response.

For more details, see Zohdi [89–103]. An implementation of a

‘‘framing’’ approach is as follows:

• Step (1) Generate a sample with a certain number of

particles in its interior,

• Step (2) For the effective property calculation (averag-

ing), select a subsample (‘‘a sub-box’’, Fig. 5) in the

interior (to avoid boundary layer effects that arise from

the imposition of boundary conditions),

• Step (3) Repeat Steps (1) and (2) for different random

realizations for a given sample size, and average the

resulting response to determine a mean value,

• Step (4) Repeat Steps (1)–(3) for a larger sample,

• Step (5) Continue the process [Steps (1)–(4)] until the

response ceases to change to within an acceptable tolerance.

For a more in depth discussion on size-effect issues, see the

works of Zohdi [89–103].

4.2 Numerical Examples

As an example, the following parameters were used:

• Reference temperature, hr ¼ 300	 K,

• Initial temperature, h0 ¼ 300	 K,

• Total time, T ¼ 10�5 s,
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• Initial time step size, Dt ¼ 10�10 s,

• Damage lower bound, D ¼ 0:1,

• Displacement loading on all sides u ¼ ð0; 0; 0Þ m,

• Temperature of all sides (except top), hðtÞ ¼ 300	 K,

• Dimensions of the sample, 0:001 � 0:001 � 0:001 m,

• Particles in the sample, Np ¼ 100,

• Base density, q ¼ 1000 kg=m3,

• Base Lame parameters, ko ¼ 10 Gpa, lo ¼ 3 Gpa,

• Base conductivity, KKo ¼ Ko1, Ko ¼ 100 W/K�m,

• Base thermal expansion coefficient, bo ¼ 0:000001,

• Base heat capacity, Co ¼ 10 J/K�kg,

• Base plastic rate coefficient, ao ¼ 0:001,

• Base yield stress, ryo ¼ 10 Mpa,

• Base damage rate coefficient, bo ¼ �10000000,

• Base damage flow stress, rdo ¼ 10 Mpa,

• Relative densities, q1r ¼ q1

q ¼ 1, q2r ¼ q2

q ¼ 2,

• Relative Lame parameters, k1r ¼ k1

ko
, k2r ¼ k2

ko
¼ 5,

• Relative Lame parameters, l1r ¼ l1

lo
¼ 1, l2r ¼ l2

lo
¼ 5,

• Relative conductivity, K1r ¼ K1

Ko
¼ 1, K2r ¼ K2

Ko
¼ 5,

• Relative thermal expansion, b1r ¼ b1

bo
¼ 1, b2r ¼

b2

bo
¼ 10,

• Relative heat capacity, C1r ¼ C1

Co
¼ 1, C2r ¼ C2

Co
¼ 2,

• Relative plastic rate coefficient, a1r ¼ a1

ao
¼ 1, a2r ¼

a2

ao
¼ 1,

• Relative damage rate coefficient, b1r ¼ b1

bo
¼ 1, b2r ¼

b2

bo
¼ 1,

• Relative plastic yield, ry1r ¼ ry1

ryo
¼ 1, ry2r ¼ ry2

ryo
¼ 5,

• Relative damage threshold, rd1r ¼ rd1

rdo
¼ 1, rd1r ¼

rd2

rdo
¼ 5,

• A time stepping factor / ¼ 0:5 (mid-point rule),

• An overlapping length scale of the particles of f ¼
0:375,

• The number of desired iterations per time step set to

Kd ¼ 5, along with a coupling/staggering tolerance of

Ctol ¼ 10�2,

• Weights for the iterative error norm, w1 ¼ 0:5 and

w2 ¼ 0:5.

SUBSAMPLE
Fig. 5 Right With the framing

method, a sample is probed with

interior subsamples, within the

larger sample, in order to avoid

boundary layer effects that

occur from imposing boundary

conditions on the large-sample

exterior. Left A mesh of the

subsample

LASER

B

D

I

I+ IΔ

A
B
S
O
R

E

Fig. 6 Left Representations of

laser input and absorption. Right

Upcoming results showing

mesh, absorption of energy and

temperature
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Throughout the computations, the spatial discretization

meshes were repeatedly refined until the solutions did not

exhibit any more sensitivity to further refinement of the

grid-spacing.

4.3 Results

In Figs. 6, 7, 8, 9 and 10, frames of the sample and cross-

sectional temperature profiles are shown for targeted laser

heating. We started with meshes such as a 21 � 21 � 21

mesh, arising from having a cubical mesh with 10 nodes

from the centerline plane of symmetry and one node in the

middle, and then repeatedly refined in the following

sequential manner:

1. Mesh # 1: a 21 � 21 � 21 mesh, which has 9,261

degrees of freedom (DOF) for the thermal field and

27,783 DOF for the mechanical field, for a total of

37,044 DOF.

2. Mesh # 2: a 41 � 41 � 41 mesh, which has 68921

degrees of freedom (DOF) for the thermal field and

206783 DOF for the mechanical field, for a total of

275,684 DOF.

3. Mesh # 3: a 61 � 61 � 61 mesh, which has 226,981

degrees of freedom (DOF) for the thermal field and

680,943 DOF for the mechanical field, for a total of

907,924 DOF.

4. Mesh # 4: a 81 � 81 � 81 mesh, which has 531,441

degrees of freedom (DOF) for the thermal field and

1,594,322 DOF for the mechanical field, for a total of

2,125,764 DOF.

Approximately between a 61-level and a 81-level mesh, the

results stabilized, indicating that the results are essentially

free of any appreciable numerical error. At the length-

scales of interest, it is questionable whether the ideas of a

sharp material interface are justified. Accordingly, we

simulated the system with and without Laplacian smooth-

ing, whereby one smooths the material data by post-pro-

cessing the material data, node by node, to produce a

smoother material representation, for example, for the

thermal conductivity, K̂K (using the stencil in Fig. 11 in the

‘‘Appendix 1’’)

r2
XKK ¼ 0 ) K̂Ki;j;k ¼

1

6

�
KKiþ1;j;k þKKi�1;j;k þKKi;jþ1;k

þKKi;j�1;k þKKi;j;kþ1 þKKi;j;k�1Þ: ð4:5Þ

The same was done for the mechanical properties by

enforcing r2
Xk0 ¼ 0 and r2

Xl0 ¼ 0 and as well as other

material data. The simulations were run with and without

data smoothing, with the results being negligibly different

for sufficiently fine meshes. The size of the time steps were

purposely started quite small (Dt ¼ 10�10 seconds) and

given an enlargement cap of 50 times in magnitude. This

allows the system to slowly evolve to capture the quite

transient behavior. During the bulk of the computation, the

large steps were warranted (the time-step size evolved), as

dictated by the physics and the adaptive algorithm. For

other material selections and loading regimes, other adap-

tivity modes can occur. All simulations were run on a

standard laptop requiring minimal memory requirements. It

is important to stress that it is virtually impossible to

determine a-priori whether the initial time step is adequate

to meet a tolerance and whether adaptivity is needed.

Obviously, we can use this scheme for any (trapezoidal)

value of 0�/� 1. Time-step size adaptivity is important,

since the solution can dramatically change over the course

of time, possibly requiring quite different time step sizes to

control the iterative (staggering) error. However, to main-

tain the accuracy of the time-stepping scheme, one must

respect an upper bound dictated by the discretization error,

i.e., Dt�Dtlim. The example shown was simply to illustrate

the overall process. The simulation of targeted heating is a

subject of current research by the author, extending this

model to include phase transformations involving melting

and vaporization and the debris ejecta, which involves

multiple stages of nonmonotone evaporative heating and

cooling, and mass transfer.

Remark While our stated focus is the evolution of stres-

ses, a by-product of the analysis overall effective

mechanical stiffness relation defined by

hriX ¼ F�ðh�iXÞ; ð4:6Þ

where h�iX ¼def 1
jXj
R
X � dX. Similarly, one can generate

effective thermal responses

hqiX ¼ G�ðhrhiXÞ: ð4:7Þ

There are a variety of estimates for effective responses in

many fields. We refer the reader to Hashin and Shtrikman

[33] based on variational principles using the concept of

polarization tensor fields (filtering/separation of micro-

macro scales) and numerical techniques to extract the

effective response of such materials (Zohdi [89–103]).

Estimates for the effective properties of heterogeneous

materials date back over 150 years to Maxwell [55] and

[56] and Lord Rayleigh [69]. For a relatively recent and

thorough analysis of a variety of classical approaches, such

as the ones briefly mentioned here, see Torquato [81] for

general interdisciplinary discussions, Jikov et al. [40] for

more mathematical aspects, Hashin [34], Mura [57],

Nemat-Nasser and Hori [61] for solid-mechanics inclined

accounts of the subject, for analyses of defect-laden, por-

ous and cracked media, see Kachanov [42], Kachanov,
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Fig. 7 From left to right and

top to bottom: the temperature

(in Kelvin), with pulsed laser

input. The morphology is shown

in Fig. 5
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Fig. 8 From left to right and

top to bottom: orthogonal slices

through the microstructure for

the temperature (in Kelvin),

with pulsed laser input
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Fig. 9 From left to right and

top to bottom: the norm of the

deviatoric stress (in GPa), with

pulsed laser input
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Fig. 10 From left to right and

top to bottom: orthogonal slices

through the microstructure-the

norm of the deviatoric stress (in

GPa), with pulsed laser input
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Tsukrov and Shafiro [43], Kachanov and Sevostianov [44],

Sevostianov, Gorbatikh and Kachanov [77], Sevostianov

and Kachanov [78], and for computational aspects see

Ghosh [30], Ghosh and Dimiduk [31] and Zohdi [89–103]

4.4 Extensions: Advanced Models for Conduction

Utilizing Thermal Relaxation

Within the last decade, technological advances have

enabled the reliable control of ultrafast pulsed lasers to

activate small-time scale heat wave effects. These effects

are often referred to as thermally-relaxed ‘‘second-sound’’

effects, because of their mathematical similarity to wave

propagation in acoustics, although normal sound waves are

fluctuations in the density of molecules in a substance

while thermally-relaxed second-sound waves are fluctua-

tions in the density of phonons. Such phenomena are pre-

dicted by models which introduce thermal relaxation times

into heat-conduction relations. The thermally-relaxed sec-

ond-sound is a quantum mechanical phenomenon in which

heat transfer occurs by wave-like motion, rather than by the

more usual mechanism of diffusion. This leads to a very

high confinement of thermal energy in very targeted zones.

Thermally-relaxed phenomena can be observed in any

system in which most phonon–phonon collisions conserve

momentum, and can play a role when the time scale of heat

input is quite small.

4.4.1 Thermally-Relaxed Continuum Model

The thermally-relaxed second-sound type model can be

motivated by a Jeffreys-type relation between the

conductive flux and temperature gradient (Joseph amd

Preziosi [66] and Ignaczak and Ostoja-Starzewski [39]):

s
oqk
ot

þ qk ¼ �KK � rh; ð4:8Þ

where s is the relaxation time, h is the temperature, t is

time, qk is the conductive heat flux, KK is the thermal

conductivity. To clearly illustrate the character of this

model, relative to standard head conduction, we ignore

stress-power effects, yielding

qC
oh
ot

¼ �r � qk þ S; ð4:9Þ

where q is the mass density, C is the heat capacity and S
represents other sources, such as laser energy input. By

taking the partial derivative with respect to time of the

above yields, assuming no material changes,

qC
o2h
ot2

¼ � or � qk
ot

þ oS
ot

¼ �r � oqk
ot

þ oS
ot

: ð4:10Þ

Inserting Eqs. 4.8 into 4.9 and 4.10 yields

o2h
ot2

þ 1

s
oh
ot

¼ 1

qCs
r � ðKK � rhÞ þ 1

qCs
S þ 1

qC
oS
ot

:

ð4:11Þ

This produces attenuating heat waves. In the case of a

homogeneous medium, the wave speed is
ffiffiffiffiffiffi
K
qCs

q
.

4.4.2 Extreme Cases

We have the following extreme parameter cases:

−

0 0

0 ii

i−0.5i,j+0.5j i+0.5i,j+0.5j

i−0.5i,j+0.5j i+0.5i,j−0.5j

0

0

0

i5.0+ii5.0−i

Δ x

Δ x
1

1

2

1
Δ x Δ x

j2

4 ji

i

−

−

−

TERM−II

TERM−I

TERM−III

i−0.5i i+0.5i

a a

a a a a

a

a

a

a

−

Fig. 11 Various Finite-

difference stencils in

‘‘computational molecule’’ form

(centered at ðxi; xj; xkÞ), where:

(1) TERM-I: a ou
oxi

, (2) TERM-

II: o
oxi

a ou
oxi

� �
and (3) TERM-

III: o
oxj

a ou
oxi

� �
, following Zohdi

[89–103]
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• In the special case of s ! 0, one obtains the classical

heat conduction equation

qC
oh
ot

¼ r �KK � rhþ S: ð4:12Þ

• In the special case of s ! 1, one obtains

qC
o2h
ot2

¼ oS
ot

) qC
oh
ot

¼ S; ð4:13Þ

which eliminates heat losses due to conduction, thus

confining heat input.

• In the special case when s ! 1, K ! 1 and K
s

remaining finite, then a purely hyperbolic equation

arises

o2h
ot2

¼ 1

qCs
r �KK � rh: ð4:14Þ

An excellent review of a wide range of heat transfer models

can be found in the seminal review paper of Joseph and

Preziosi [66] or the text of Ignaczak and Ostoja-Starzewski

[39]. In the general case, we couple Eq. 4.8 to the more

general First Law:

q _w ¼ r : r _u�r � qk þ qz: ð4:15Þ

4.4.3 Algorithm for Thermal Relaxation

The thermally-relaxed heat flux, since it is governed by it’s

own PDE, requires simultaneous solution with the other

governing equations. We approach this from a staggering

point of view by, at a time-step, at every node in the system:

• Solve for q fixing h,

• Solve for h (using the just updated q) and

• Repeating until convergence.

At each iteration, q can be solved for analytically (for fixed

h). We proceed by solving the following ODE (spatially

fixed), for each component q ¼ ðq1; q2; q3Þ, over the

interval to � t� to þ /Dt

s
oqi

ot
þ qi ¼ �ðKK � rhÞi; ð4:16Þ

with initial condition qi ¼ qiðt ¼ toÞ. Since we are

‘‘freezing’’ h, this yields an ODE in time with solution

(defining ~t ¼ t � to)

qið~tÞ¼ qið~t¼ 0ÞþðKK �rhð~tþ toÞÞi
� �

e�
~t
s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slows conduction

�ðK �rhð~tþ toÞÞi|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
regular conduction

;

ð4:17Þ

which yields at time t

qðtÞ ¼ qðtoÞ þ ðKK � rhðtÞÞð Þe�
t�to
s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

slows conduction

� ðK � rhðtÞÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
regular conduction

;

ð4:18Þ

For the spatial discretization (needed in the First Law of

Thermodynamics) this yields:

r � q ¼ r � qðtoÞ þ ðKK � rhðto þ /DtÞÞð Þe�
t�to
s

þ qðtoÞ þ ðKK � rhðto þ /DtÞÞð Þ � re�
t�to
s

�r � ðK � rhðto þ /DtÞÞ; ð4:19Þ

where

re�
t�to
s ¼ ðt � toÞs�2e�

t�to
s rs: ð4:20Þ

Remark 1 This yields at time t ¼ to þ /Dt

qðto þ /DtÞ ¼ qðtoÞ þ ðKK � rhðto þ /DtÞÞð Þe�
/Dt
s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

slows conduction

� ðK � rhðto þ /DtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regular conduction

;
ð4:21Þ

which is needed in the trapezoidal time stepping scheme.

Remark 2 We note that for a for a Discrete Element

Method formulation,

miCi
_hi ¼ �qi � niAi ¼ q�i Ai ð4:22Þ

this becomes6

q�ðtÞi ¼ � qðtoÞ þ KKi

hj � hi
jjrj � rijj

� �
jt

� �
e�

t�to
s

þ KKi

hj � hi
jjrj � rijj

� �
jt: ð4:24Þ

5 Summary and Extensions

The spatial discretization grids used were uniform and

dense, and the deposited microstructure was embedded into

spatial discretization. The regular grid allows one to gen-

erate a matrix-free iterative formulation which is amenable

to rapid calculation and minimal memory requirements,

making it ideal for laptop computation. From the point of

view of computational challenges, the types of numerical

methods needed to simulate such processes are still in their

infancy. What was illustrated in this paper was the analysis

on one isolated component of an overall additive process-

namely the subprocess of laser energy input. There are

many more related process which must be coupled to this

6 For example, for a trapezoidal time-stepping scheme

q�ðto þ /DtÞi ¼ � qðtoÞ þ KKi

hj � hi
jjrj � rijj

� �
jtoþ/Dt

� �
e�

/Dt
s

þ KKi

hj � hi
jjrj � rijj

� �
jtoþ/Dt:

ð4:23Þ

Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials

123



subprocess. One objective of future research is the devel-

opment of Discrete Element models for the dynamics of

deposition, which can be seamlessly coupled to continuum-

based models, utilizing the best of both formulations, that

capture the following main physical events:

• particle motion/dynamics, which primarily entails:

(a) the movement of the particles induced by contact

with substrates (which are potentially electrified) and

(b) particle-to-particle contact forces,

• particle electrical current flow, which primarily entails:

(a) current flow through the particles and (b) current

exchange between the particles and walls,

• particle thermodynamics, which primarily entails:

(a) heat transfer between particles in contact by

conduction, (b) thermal softening of the particles and

(c) change of phase from a solid, to a liquid to a gas,

• discretization of laser beams (or other external heat

sources, such as e-beams, infra-red sources, etc) and

models which track such energy propagation (such as

optical reflection and absorption) through complex

material microstructure, its conversion into heat and the

subsequent conduction and phase transformations

involving melting and vaporization,

• Modeling and simulation potentially hazardous debris

(sublimated) ejecta from laser ablation of substrates or

deposited materials, employing a combination of dis-

crete element and continuum methods.

Any realistic simulation of an advanced additive manu-

facturing process will involve many of the subprocesses

mentioned above, leading to a strongly-coupled multi-

physical system, since the dynamics controls which parti-

cles are in mechanical contact, thus dictating the possible

electrical contacts and conduction, which in turn controls

the conductive heating and softening and binding the

material, as well as the interaction with external laser-

based sources, as seen in this monograph. For example,

approaches taken here are to construct a submodel for each

primary physical process mentioned above. These sub-

models are coupled to one another and are solved by

extending the recursive multiphysical staggering scheme,

as discussed in this paper. The modular approach allows for

easy improvement, replacement or addition to submodels,

if needed. For more details, the reader is referred to Zohdi

[89–103]. Variants of the technique have been applied to

related problems involving more coupled multiphysics,

such as electro-magneto-thermo-mechano-chemo effects,

in Zohdi [89–103], whereby one computes the electrical E-

field with the magnetic field H, thermal field h, displace-

ment field u and chemical field c fixed, then computes H-

field with E, h, u and c fields fixed, etc, and iterates at time

interval Lþ 1, K ¼ 1; 2::: for (written directly in iterative

implicit form)

ELþ1;K ¼ FðELþ1;K�1;HLþ1;K�1; hLþ1;K�1; uLþ1;K�1; cLþ1;K�1Þ;
ð5:1Þ

and

HLþ1;K ¼ GðELþ1;K ;HLþ1;K�1; hLþ1;K�1; uLþ1;K�1; cLþ1;K�1Þ;
ð5:2Þ

and

hLþ1;K ¼ YðELþ1;K ;HLþ1;K ; hLþ1;K�1; uLþ1;K�1; cLþ1;K�1Þ;
ð5:3Þ

and

uLþ1;K ¼ LðELþ1;K ;HLþ1;K ; hLþ1;K ; uLþ1;K�1; cLþ1;K�1Þ;
ð5:4Þ

and

cLþ1;K ¼ CðELþ1;K ;HLþ1;K ; hLþ1;K ; uLþ1;K ; cLþ1;K�1Þ;
ð5:5Þ

where the only underlined variable is active at that stage of

the process. One then computes the maximum of the error

measures -�;K ¼def
maxð-K

E ;-
K
H ;-

K
h ;-

K
u ;-

K
c Þ in order to

determine if time-step adaptivity is necessary, as intro-

duced earlier for the thermo-mechanical scheme. Gener-

ally, the methods discussed in this work can be combined

to create hybrid block-partitioned approaches, whereby the

entire domain is partitioned into subdomains and within

each subdomain an iterative method is applied. In other

words, for a subdomain, the values at all nodes from out-

side are initially frozen, as far as calculations involving

members of the group are concerned. After each isolated

subdomain’s solution (nodal values) has converged (com-

puted in parallel), then all nodal values are updated, i.e. the

most current values become available to all members of the

grid, and the isolated subdomain calculations are repeated.

Although parallel computation of the introduced algo-

rithms was not pursued in this work, it is currently being

investigated by the author.
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Appendix 1: Spatial Finite Difference Stencils

Following Zohdi [89–103], standard approximations are

used:

1. For the first derivative of a primal variable u at

ðx1; x2; x3Þ:
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ou

ox1

� uðx1 þ Dx1; x2; x3Þ � uðx1 � Dx1; x2; x3Þ
2Dx1

ð6:1Þ

2. For the derivative of a flux at ðx1; x2; x3Þ, with an

arbitrary material coefficient a:

o

ox1

a
ou

ox1

� �
�

a ou
ox1

� �
j
x1þDx1

2
;x2;x3

� a ou
ox1

� �
j
x1�Dx1

2
;x2;x3

Dx1

¼ 1

Dx1



aðx1 þ

Dx1

2
;x2;x3Þ

� uðx1 þDx1;x2;x3Þ�uðx1;x2;x3Þ
Dx1

� ��

� 1

Dx1



aðx1 �

Dx1

2
;x2;x3Þ

� uðx1;x2;x3Þ�uðx1 �Dx1;x2;x3Þ
Dx1

� ��
;

ð6:2Þ

where we have used

aðx1 þ
Dx1

2
;x2;x3Þ�

1

2
aðx1 þDx1;x2;x3Þþaðx1;x2;x3Þð Þ

ð6:3Þ

and

aðx1 �
Dx1

2
; x2; x3Þ �

1

2

�
aðx1; x2; x3Þ

þ aðx1 � Dx1; x2; x3ÞÞ
ð6:4Þ

3. For the cross-derivative of a flux at ðx1; x2Þ:

o

ox2

a
ou

ox1

� �
�

� uðx1 þ Dx1; x2; x3Þ � uðx1 � Dx1; x2; x3Þ
2Dx1

� ��

� 1

4Dx1Dx2

ðaðx1; x2 þ Dx2; x3Þ

�
�
uðx1 þ Dx1; x2 þ Dx2; x3Þ

� uðx1 � Dx1; x2 þ Dx2; x3Þ

� aðx1; x2 � Dx2; x3Þ

�
uðx1 þ Dx1; x2

� Dx2; x3Þ � uðx1 � Dx1; x2 � Dx2; x3Þ
Þ;
ð6:5Þ

Remark To illustrate second-order accuracy, consider a

Taylor series expansion for an arbitrary function u

uðxþ DxÞ ¼ uðxÞ þ ou

ox
jxDxþ

1

2

o2u

ox2
jxðDxÞ

2

þ 1

6

o3u

ox3
jxðDxÞ

3 þOððDxÞ4Þ
ð6:6Þ

and

uðx� DxÞ ¼ uðxÞ � ou

ox
jxDxþ

1

2

o2u

ox2
jxðDxÞ

2

� 1

6

o3u

ox3
jxðDxÞ

3 þOððDxÞ4Þ
ð6:7Þ

Subtracting the two expressions yields

ou

ox
jx ¼

uðxþ DxÞ � uðx� DxÞ
2Dx

þOððDxÞ2Þ: ð6:8Þ

Appendix 2: Temporally-Adaptive Iterative
Methods

Implicit time-stepping methods, with time step size adap-

tivity, built on approaches found in Zohdi [89–103] were

used throughout the analysis in the body of the work. In

order to introduce basic concepts, we consider a first order

differential equation for a field W:

_W ¼ KðWÞ; ð7:1Þ

which, after being discretized using a trapezoidal ‘‘/-

method’’ (0�/� 1)

WLþ1 ¼ WL þ Dt /KðWLþ1Þ þ ð1 � /ÞKðWLÞ
� �

: ð7:2Þ

Generally, for systems of equations of this form, a

straightforward iterative scheme can be written as

WLþ1;K ¼ GðWLþ1;K�1Þ þ R; ð7:3Þ

where R is a remainder term that does not depend on the

solution, i.e. R 6¼ RðWLþ1Þ, and K ¼ 1; 2; 3; ::: is the

index of iteration within time step Lþ 1. The convergence

of such a scheme is dependent on the behavior of G.

Namely, a sufficient condition for convergence is that G is a

contraction mapping for all WLþ1;K , K ¼ 1; 2; 3::: In order

to investigate this further, we define the iteration error as

-Lþ1;K ¼def jjWLþ1;K �WLþ1jj: ð7:4Þ

A necessary restriction for convergence is iterative self

consistency, i.e. the ‘‘exact’’ (discretized) solution must be

represented by the scheme

GðWLþ1Þ þ R ¼ WLþ1: ð7:5Þ

Enforcing this restriction, a sufficient condition for con-

vergence is the existence of a contraction mapping

-Lþ1;K ¼ jjWLþ1;K �WLþ1jj ¼jjGðWLþ1;K�1Þ � GðWLþ1Þjj
ð7:6Þ
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� gLþ1;K jjWLþ1;K�1 �WLþ1jj; ð7:7Þ

where, if 0� gLþ1;K\1 for each iteration K, then -Lþ1;K !
0 for any arbitrary starting value WLþ1;K¼0, as K ! 1.

This type of contraction condition is sufficient, but not

necessary, for convergence. Inserting these approximations

into _W ¼ KðWÞ leads to

WLþ1;K � Dt /KðWLþ1;K�1Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðWLþ1;K�1Þ

þDtð1 � /ÞKðWLÞ þWL

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

;

ð7:8Þ

whose contraction constant is scaled by g / /Dt. There-

fore, if convergence is slow within a time step, the time

step size, which is adjustable, can be reduced by an

appropriate amount to increase the rate of convergence.

Decreasing the time step size improves the convergence,

however, we want to simultaneously maximize the time-

step sizes to decrease overall computing time, while still

meeting an error tolerance on the numerical solution’s

accuracy. In order to achieve this goal, we follow an

approach found in Zohdi [89–103] originally developed for

continuum thermo-chemical multifield problems in which

one first approximates

gLþ1;K � SðDtÞp ð7:9Þ

(S is a constant) and secondly one assumes the error within

an iteration to behave according to

ðSðDtÞpÞK-Lþ1;0 ¼ -Lþ1;K ; ð7:10Þ

K ¼ 1; 2; . . ., where -Lþ1;0 is the initial norm of the iter-

ative error and S is intrinsic to the system.7 Our goal is to

meet an error tolerance in exactly a preset number of

iterations. To this end, one writes

ðSðDttolÞpÞKd-Lþ1;0 ¼ Ctol; ð7:11Þ

where Ctol is a (coupling) tolerance and where Kd is the

number of desired iterations.8 If the error tolerance is not met

in the desired number of iterations, the contraction constant

gLþ1;K is too large. Accordingly, one can solve for a new

smaller step size, under the assumption that S is constant,

Dttol ¼ Dt
ð Ctol

-Lþ1;0
Þ

1
pKd

ð-
Lþ1;K

-Lþ1;0
Þ

1
pK

0
BB@

1
CCA: ð7:12Þ

The assumption that S is constant is not critical, since the

time steps are to be recursively refined and unrefined

throughout the simulation. Clearly, the expression in

Eq. 7.12 can also be used for time step enlargement, if

convergence is met in less than Kd iterations.9

Appendix 3: Second-Order Temporal
Discretization

Following Zohdi [89–103], discretization of temporally

second-order equations can be illustrated by considering

€U ¼ _V ¼ WðUÞ: ð8:1Þ

Expanding the field V in a Taylor series about t þ /Dt we

obtain

Vðt þ DtÞ ¼ Vðt þ /DtÞ þ dV

dt
jtþ/Dtð1 � /ÞDt

þ 1

2

d2V

dt2
jtþ/Dtð1 � /Þ2ðDtÞ2 þOððDtÞ3Þ

ð8:2Þ

and

VðtÞ ¼ Vðt þ /DtÞ � dV

dt
jtþ/Dt/Dt þ

1

2

d2V

dt2
jtþ/Dt/

2ðDtÞ2

þOððDtÞ3Þ
ð8:3Þ

Subtracting the two expressions yields

dV

dt
jtþ/Dt ¼

Vðt þ DtÞ � VðtÞ
Dt

þ ÔðDtÞ; ð8:4Þ

where ÔðDtÞ ¼ OððDtÞ2Þ, when / ¼ 1
2
. Thus, inserting this

into the governing equation yields

Vðt þ DtÞ ¼ VðtÞ þ DtWðt þ /DtÞ þ ÔððDtÞ2Þ: ð8:5Þ

Note that adding a weighted sum of Eqs. 8.2 and 8.3 yields

Vðt þ /DtÞ ¼ /Vðt þ DtÞ þ ð1 � /ÞVðtÞ þ OððDtÞ2Þ;
ð8:6Þ

which will be useful shortly. Now expanding the field U in

a Taylor series about t þ /Dt we obtain

Uðt þ DtÞ ¼ Uðt þ /DtÞ þ dU

dt
jtþ/Dtð1 � /ÞDt

þ 1

2

d2U

dt2
jtþ/Dtð1 � /Þ2ðDtÞ2 þOððDtÞ3Þ

ð8:7Þ

and

7 For the class of problems under consideration, due to the linear

dependency on Dt, p � 1.
8 Typically, Kd is chosen to be between five to ten iterations.

9 At the implementation level, since the exact solution is unknown,

the following relative error term is used, -Lþ1;K ¼def jjWLþ1;K

�WLþ1;K�1jj.
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UðtÞ ¼ Uðt þ /DtÞ � dU

dt
jtþ/Dt/Dt þ

1

2

d2U

dt2
jtþ/Dt/

2ðDtÞ2

þOððDtÞ3Þ: ð8:8Þ

Subtracting the two expressions yields

Uðt þ DtÞ � UðtÞ
Dt

¼ Vðt þ /DtÞ þ ÔðDtÞ: ð8:9Þ

Inserting Eq. 8.6 yields

Uðt þ DtÞ ¼ UðtÞ þ /Vðt þ DtÞ þ ð1 � /ÞVðtÞð ÞDt
þ ÔððDtÞ2Þ: ð8:10Þ

and thus using Eq. 8.5 yields

Uðt þ DtÞ ¼ UðtÞ þ VðtÞDt þ /ðDtÞ2WðUðt þ /DtÞÞ
þ ÔððDtÞ2Þ: ð8:11Þ

The term WðUðt þ /DtÞÞ can be handled in two main

ways:

• Wðt þ /DtÞ � Wð/Uðt þ DtÞ þ ð1 � /ÞUðtÞÞ or

• Wðt þ /DtÞ � /WðUðt þ DtÞÞ þ ð1 � /ÞWðUðtÞÞ.
The differences are quite minute between either of the

above, thus, for brevity, we choose the latter. In summary,

we have the following:

Uðt þ DtÞ ¼ UðtÞ þ VðtÞDt þ /ðDtÞ2
�
/WðUðt þ DtÞÞ

þ ð1 � /ÞWðUðtÞÞÞ þ ÔððDtÞ2Þ: ð8:12Þ

We note that

• When / ¼ 1, then this is the (implicit) Backward Euler

scheme, which is very stable (very dissipative) and

OððDtÞ2Þ locally in time,

• When / ¼ 0, then this is the (explicit) Forward Euler

scheme, which is conditionally stable and OððDtÞ2Þ
locally in time,

• When / ¼ 0:5, then this is the (implicit) ‘‘Midpoint’’

scheme, which is stable and ÔððDtÞ2Þ ¼ OððDtÞ3Þ
locally in time.

In summary, we have for the velocity10

Vðt þ DtÞ ¼ VðtÞ þ Dt /WðUðt þ DtÞÞ þ ð1 � /ÞWðUðtÞÞð Þ
ð8:13Þ

and for the position

Uðt þ DtÞ ¼ UðtÞ þ Vðt þ /DtÞDt
¼UðtÞ þ /Vðt þ DtÞ þ ð1 � /ÞVðtÞð ÞDt;

ð8:14Þ

or more explicitly

Uðt þ DtÞ ¼ UðtÞ þ VðtÞDt þ /ðDtÞ2
�
/WðUðt þ DtÞÞ

þ ð1 � /ÞWðUðtÞÞÞ: ð8:15Þ

In iterative (recursion) form

ULþ1;K ¼ ð/DtÞ2WðULþ1;K�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðULþ1;K�1Þ

þ UL þ VLDt þ ðDtÞ2/ð1 � /ÞWðULÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

ð8:16Þ

Remark Applying this scheme to the balance of linear

momentum continuum formulation, under infinitesimal

deformations, rX � rþ f ¼ q o2u
ot2

we use WðuðtÞÞ ¼ rX �rþf
q ,

and must apply the (iterative) process introduced earlier to

all nodes in the system.
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