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Abstract

Due to increasing demands for faster and faster manufacturing of new
complex materials, such as casting of particulate composites, the deter-
mination of pumping pressures needed for particle-laden fluids through
channels is critical. In particular, the increase in viscosity as a function
of the particle volume fraction can lead to system malfunction, due to
an inability to deliver necessary pressures to pump the more viscous fluid
through the system. This paper studies the pressure gradient needed to
maintain a given flow rate, explicitly as a function of the volume frac-
tion of particles present in the fluid. It is also crucial to control voids
in the casted products, which can be traced to air-entrainment, spurious
internal reactions, de-wetting, etc, which can be traced to high Reynolds
numbers. Accordingly, an expression for the resulting Reynolds number
as a function of the particle volume fraction and flow rate is also devel-
oped. Numerical examples are provided to illustrate the practical use of
the derived relations to characterize the necessary pumping pressures for
process-driven, particle-laden fluid flows.

1 Introduction

In a variety of industries, ranging from next generation engines, turbo ma-
chinery, printed electronics, food processing, etc, new types of heterogeneous
materials, comprised of particulates in a binding matrix, are being developed
and utilized. The macroscopic material characteristics of the material are dic-
tated by the aggregate response of an assemblage of particles suspended in a
binding matrix material. In the fabrication of such materials, the basic philos-
ophy is to select material combinations to produce desired aggregate responses.
For example, in structural engineering applications, the classical choice is a
harder particulate phase that serves as a stiffening agent for a ductile, easy
to form, base matrix material. Oftentimes, such materials start in particulate
form, and are then mixed with a binder and delivered as a flowing slurry to be
cast into their final shape.1 Thus, because of the increasing demands for faster
and faster manufacturing of new complex particle-laden materials, the deter-
mination of pumping pressures needed to move such fluids through channels is
critical (Figure 1).

For particle laden fluids delivered through channels, the increase in viscosity
can lead to system malfunction, due to an inability to supply necessary pressures

1Over 50 % (by mass) of man-made materials start in granulated form.
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Figure 1: (a) A particle laden fluid in a channel and (b) the increase in the
ratio of effective viscosity to baseline fluid viscosity (µ∗/µf ) as a function of
secondary particle volume fraction (νp).

to pump the more viscous material properly. This paper studies the pressure
gradient needed to maintain a given flow rate, explicitly as a function of the
volume fraction of particles present in the fluid. The expression is general and
easy to apply for the analysis of pumping particle-laden fluids. Furthermore,
it is crucial to control voids in the resulting casted products, which are cor-
related to air-entrainment, spurious internal reactions, de-wetting, etc. These
effects are correlated to high Reynolds numbers. Accordingly, an expression
for the resulting Reynolds number as a function of the particle volume fraction
and flow rate is also developed. Numerical examples are provided to illustrate
the practical use of the derived relations to characterize the necessary pumping
pressures for process-driven particle-laden fluid flows. Because resulting voids
may be impossible to avoid, we also determine their effects on the overall effec-
tive properties of a heterogeneous two-phase slurry consisting of particles and a
binding interstitial material. Estimates are developed for the reduction of the
overall mechanical and thermal properties, based on embedded, double applica-
tion of the Hashin-Shtrikman bounds, whereby, on the first level, the effective
properties due to voids are computed, and on the second level the smaller scale
heterogeneous material is taken into account.2This research is also quite rel-
evant to the development of high-resolution electrohydrodynamic-jet printing
processes. For overviews, see Wei and Dong [1], who also develop specialized
processes employing phase-change inks. Such processes are capable of producing
micron-level footprints for high-resolution additive manufacturing.

2Generally, use of homogenized effective properties is justified if the inherent length scale
ratio of the particles to the structure is below 1:50.
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Remark: The objective of the analysis is to develop semianalytical ex-
pressions that can help guide analysts who are designing manufacturing sys-
tems involving particle-laden flows. Clearly, one could approach the problem
with a large-scale CFD analysis. However, for direct numerical simulation of
particle-laden continua, spatio-temporal discretization grids must be extremely
fine, with several thousand numerical unknowns needed per particle length-scale
for numerically-accurate results. Thus, for several hundred thousand particles
in a system a proper discretization would require several billion numerical un-
knowns (see for example Onate et al. [2, 3], Rojek et al. [4], Carbonell et al. [5],
Labra and Onate [6], Leonardi et al [7], Cante et al [8], Rojek [9], Onate et al
[10], Bolintineanu et al [11], Avci and Wriggers [12] and Zohdi [13, 14] and Zohdi
and Wriggers [15]. Although such simulations are possible in high-performance
computing centers, their usefulness for rapid daily design analysis is minimal.
This will be discussed further in the summary.

2 Channel flow

As indicated in the introduction, the presence of secondary particles in fluids,
particularly within channels, is wide-ranging and their presence can dramatically
increase the effective overall viscosity, thus requiring increased applied pressure
to maintain nominal flow rates (Figure 1). The primary objective of the first part
of this analysis is to derive a relatively easy to use expression for the pressure
gradient required to maintain a given flow rate in a channel, as a function of
the volume fraction of secondary particles present in the fluid.

Accordingly, consider an idealized channel with a circular cross-section of
area A = πR2, with a velocity profile given by a classical channel-flow of the
form:

v = vmax

(

1−
( r

R

)q)

, (1)

where vmax is the centerline velocity and r is the radial coordinate from the
centerline of the channel. For fully developed laminar flow, q = 2, while for
increasing q one characterizes, phenomenologically, progressively turbulent flow
(q ≥ 2). The shear stress is given by

τ = µ∗
∂v

∂r
= −

µ∗vmaxq

R

( r

R

)q−1

, (2)

where µ∗ is the effective viscosity of the particle-laden fluid. We assume that
the overall flow rate is assumed constant, thus

Q =

∫

A

v dA = Qo. (3)

One can show that

vmax =
Qo(q + 2)

Aq
=

Qo(q + 2)

πR2q
. (4)
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The stress at the wall becomes

τw = −τ(r = R) =
µ∗vmaxq

R
=

µ∗Qo(q + 2)

πR3
. (5)

We have the following observations:

• Increasing µ∗, Qo or q increases the stress at the wall (τw),

• Increasing q leads to an increasingly more blunted flow profile and

• Decreasing R increases the stress at the wall (τw).

Remarks: In the remaining analysis, we will assume steady flow, the parti-
cles are not elongated and that they are well distributed within the base fluid.3

Furthermore, we will adopt a generalization of the classical Poiseuille solution
for fully developed flow in a pipe (assuming the velocity depends on some un-
determined power q instead of the standard parabolic dependence for laminar
single-phase flow).

3 Pressure gradients

The previous expressions allow us to correlate the pressure applied to a volume
of particle-laden to allow it to move as a constant flow rate. By performing
a force balance we have in the positive x-direction (assuming steady flow, no
acceleration)

(−(P +∆P ) + P )πR2 − τw2πR∆x = 0, (6)

where x is the coordinate along the length of the channel and ∆x is the differ-
ential length, leading to

−∆P = µ∗
Qo(q + 2)

π2R5
2πR∆x =

2µ∗Qo(q + 2)∆x

πR4
, (7)

where we used the expression for vmax and where the effective viscosity is a
function of the volume fraction of particles, µ∗ = µ∗(νp). An explicit relation
for µ∗(νp) will be given shortly. Solving for the pressure gradient yields

−
∆P

∆x
=

2µ∗(q + 2)

πR4
︸ ︷︷ ︸

C

Qo
def
= CQo. (8)

If we fix the flow rate Qo, the multiplier C identifies the pressure gradient needed
to achieve a flow rate Qo. For a fixed value of q, the expression directly indicates
that an increase in viscosity will require an increase in the pressure gradient.

3In long channels, elongated particles can tend to align themselves in a particular direction
that could also affect their viscosity. The assumptions made eliminate this possibility for the
problems under consideration.
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For small channels this can be a problem, as indicated by the R4 term in the
denominator. However, in general, q is a function of the Reynolds number. This
case will be considered next.

4 Velocity profile characteristics

INCREASINGLY 
TURBULENT

(INCREASING q)

Figure 2: Progressive blunting of the velocity profile with increasing Reynolds
number.

As the Reynolds number increases, the velocity profile will change from
a quadratic (q = 2) to a more blunted profile (q >> 2), which represents,
phenomenologically, turbulent (inertia-dominated) behavior (Figure 2). The
effect of a changing profile is described by representing q by a linear function of
the centerline Reynolds’ number (Rec)

q = q(Rec) = c1Rec + c2, (9)

where Rec =
ρ∗vmax2R

µ∗
and c1 and c2 are constants. Models of this type, linking

the profile exponent (q) to the centerline Reynolds’ number (Rec), are quite
well-established, for example, see Hinze [16]. Usually, 0 ≤ c1 << 1 and c2 ≈ 2,
and in the limit we have, for c1 = 0 and c2 = 2, laminar flow (q = 2). For the
general case, combining Equation 4 with Equation 9 and the definition of the
centerline Reynolds’ number, we obtain a quadratic relationship for q,

q2 − (γ∗ + c2)q − 2γ∗ = 0, (10)

where γ∗ = 2c1Qoρ
∗

πRµ∗
, where ρ∗ is the effective density and µ∗ is the effective

viscosity. This quadratic relationship can be solved in closed form for q to
yield4

q(Rec) =
1

2

(

(γ∗ + c2)±
√

(γ∗ + c2)2 + 8γ∗

)

. (11)

4In the special case of laminar flow (c1 = 0 and c2 = 2) there are two roots to Equation
16, q = 2 and q = 0.
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The larger root is the physically correct choice (since the smaller root can be-
come negative). We further observe that q(Rec) is a function of R−1 and de-
creasing R increases q, for fixed Qo.

5 Models for effective properties of particle-laden

fluids

It is important to be able to characterize the effective properties of a particle-
laden fluid as a function of the volume fraction of particles and the baseline
(interstitial) fluid properties. The density of the particle-laden fluid is actually
an “effective density”, since it actually is a mixture of materials (particles and
interstitial fluid). Effective properties are defined through volume averages. For
example, the effective density of the mixture is

ρ∗
def
= 〈ρ(x)〉V

def
=

1

V

∫

V

ρ(x) dV =
1

V

(
∫

Vf

ρf dV +

∫

Vp

ρp dV

)

= νfρf + νpρp

(12)
where νf and νp are the volume fractions of the fluid and particles, respectively.
The volume fractions have to sum to unity:

νf + νp = 1 ⇒ νf = 1− νp (13)

Similar approaches can be used to calculate various types of properties, such
as the effective viscosity (a transport property). However, to calculate them is
a bit more complicated, since they require one to estimate the types of inter-
action between the constituents. There are a number of models which provide
expressions for the effective viscosity of the fluid containing particles. For the
purposes of this flow analysis, the particles are considered to be rigid, relative to
the surrounding fluid. For example, in 1906, Einstein [17] developed an approx-
imation which is quite simple, but only valid at extremely low volume fractions
of particles (under one percent). It reads as

µ∗ = µf (1 + 2.5νp), (14)

where µf is the viscosity of the surrounding (incompressible) fluid and the par-
ticles are assumed rigid. At even quite moderate to high volume fractions, this
approximation is inaccurate. A better approximation, which is in fact a rigor-
ous lower bound on the effective viscosity, can be derived from the well-known
Hashin and Shtrikman [18-20] bounds (see appendix), and reads as:

µ∗ = µf (1 + 2.5
νp

1− νp
). (15)

The expression above is the tightest known lower bound on the effective vis-
cosity of a two-phase material comprised of rigid particles in a surrounding
incompressible fluid. The origin of the expression in Equation 15 stems from
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bounds on effective responses for solid two-phase mixtures (see appendix). This
expression remains quite accurate up to about νp = 0.25, which is sufficient for
most applications and allows us to directly correlate the pressure gradient to
the volume fraction of the particles. We refer the reader to Torquato [21] for
more details.

6 Correlation of pressure gradient to particle

volume fraction

Using the effective properties, we have an expression for the velocity profile
exponent

q(Rec(µ
∗, ρ∗), γ∗) =

1

2

(

(γ∗ + c2)±
√

(γ∗ + c2)2 + 8γ∗

)

. (16)

Consequently, the pressure gradient’s dependency on the volume fraction of
particles can be written as

−
∆P

∆x
=

2(µf (1 + 2.5
νp

1−νp
))(q(Rec(µ

∗, ρ∗), γ∗) + 2)

πR4
Qo

def
= C∗Qo, (17)

where C∗ = C∗(Qo). For a fixed flow rate, Qo, increasing the volume fraction
of particles (νp) requires a corresponding increase in the pressure differential.
Explicitly, the Reynolds number is

Re =
vmaxDρ∗

µ∗
=

2Qo(q + 2)

πRq

((1− νp)ρf + νpρp)

µf (1 + 2.5
νp

1−νp
)

. (18)

7 Trends

To illustrate the trends, we varied Qo from 10−3 m3/s to 10−2 m3/s and utilized
the expression in Equation 17. We plotted the pressure gradient and Reynolds
number as a function of the volumetric flow rate (Qo) in Figure 3 for various
values of νp, with the following parameters used:5

• Viscosity: µf = 0.01Pa− s,

• Fluid density: ρf = 2000 kg/m3,

• Particle density: ρp = 5000 kg/m3,

• Channel radius: R = 0.01m, and

• Profile constants: c1 = 0.01 and c2 = 2.

5For reference, the viscosity of water is µf = 0.001Pa− s and for honey is µf = 1Pa− s.
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Figure 3: TRENDS: LEFT: The pressure gradient needed (−∆P
∆x

) as a function
of the desired volumetric flow rate (Qo) for various volume fractions of νp.
RIGHT: The resulting Reynolds number as a function of the volumetric flow
rate (Qo).

Generally, the trends are that a steady increase in the pressure gradient (ap-
proximately 40 % more) is needed to maintain a fixed Qo, for increasing volume
fraction of particles. Due to the increase in the particle volume fraction, the
viscosity increases, thus decreasing the Reynolds number. High Reynolds num-
bers, and consequential turbulence, can lead to aspiration (air entrainment),
spurious internal reactions, de-wetting, etc, which can lead to voids. The point
of this example was not to illustrate an all encompassing parameter set, but
simply to show the explicit dependency of the pressure gradient and Reynolds
number on the presence of secondary particles. Other parameter sets can be
easily simulated.

8 Summary

The presence of particle-laden fluids is widespread. Because the presence of par-
ticles increases the overall viscosity of the fluid, the pressure gradients needed to
pump such fluids through channels at a nominal flow rate can increase dramat-
ically. The present analysis and model can provide a useful guide to designing
systems that pump particle laden flows, with the purpose to be able to cast
materials. This paper derived the pressure gradient needed to maintain a given
flow rate, as a function volume fraction of particles present in the fluid. The
expression explicitly correlates the dependency of the pressure gradient to the
particle volume fraction, and is hopefully easy to use by researchers in the field.
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Furthermore, the developed expressions also provide estimates on the Reynolds
numbers that arise for given flow rates. The tracking of the Reynolds number
is important, since turbulence can lead to improper casting due to the result-
ing voids. For example, one can estimate the reduction of the material quality
as a function of the porous material by assuming that it is comprised of an
isotropic elastic matrix, with a bulk modulus κm and shear modulus µm, while
the porous void space is modeled by an elastic material with very low bulk and
shear moduli κv = δκm, µv = δµm, with 0 ≤ δ << 1. The exact case of voids
corresponds to δ → 0. To estimate the properties of the material with voids, we
employ the Hashin-Shtrikman bounds (see appendix), assign the following (the
harder material is the matrix and the softer is the voids): κv = κ1, µv = µ1 and
κm = κ2, µm = µ2, νv = ν1 and νm = ν2, and force µv → 0 and κv → 0 to
obtain

0 ≤ κ∗,voids ≤ κm(1− νvG(νv)) (19)

where

G(νv) =
3κm + 4µm

3νvκm + 4µm

(20)

and

0 ≤ µ∗,voids ≤ µm(1− νvC(νv)) (21)

where

C(νv) =
5(3κm + 4µm)

κm(9 + 6νv) + µm(8 + 12νv)
. (22)

One can then assign the effective properties of the void-free part of the particle-
laden mixture to the matrix material, κ∗,no−voids = κm and µ∗,no−voids = µm,
leading to

0 ≤ κ∗,voids ≤ κ∗,no−voids(1− νvG(νv)) (23)

and

0 ≤ µ∗,voids ≤ µ∗,no−voids(1− νvC(νv)). (24)

It is important to note that

• As νv → 1, νvG(νv) → 1 and νvC(νv) → 1, thus µ∗,voids → 0 and

• As νv → 0, νvG(νv) → 0 and νvC(νv) → 0, thus µ∗,voids → µ∗,no−voids.

These expressions show the resulting effective property loss as a function of the
voids. Further expressions on the reduction of material performance are pro-
vided in Appendix 2. We remark that in some applications, such as biomedical
devices, controlled porosity with pre-specified pore shapes, sizes and distribu-
tions are sought after using, for example, Porogen Templating Processes. We
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refer the reader to Hong et al [22] for a detailed overview of the state of the art
of porogen patterning. Other emerging, cutting-edge, approaches for controlled
generation of desired porosity involve laser processing (Kongsuwan et al [23]).
This is particularly useful for precisely functionalized layered substrates.

In summary, the present analysis and model can provide a useful guide to
designing and interpreting experiments. However, while the model can provide
qualitative information, extensions are almost certainly going to require complex
spatio-temporal discretization resolving multiparticle particle-fluid interaction.
Such particle/fluid systems are strongly coupled, due to the drag forces induced
by the fluid onto the particles and vice-versa. For example, in Zohdi [13, 14], a
flexible and robust solution strategy was developed to resolve coupled systems
comprised of large groups of flowing particles embedded within a continuous
flowing fluid. The focus of that work was to develop adaptive time stepping
schemes which properly resolve the coupling, via a staggered recursive time-
stepping process. The approach can be used in conjunction with computational
fluid mechanics codes based on finite difference, finite element, finite volume or
discrete element discretization, for example such as those developed in Onate et
al. [2, 3], Rojek et al. [4], Carbonell et al. [5], Labra and Onate [6], Leonardi et
al [7], Cante et al [8], Rojek [9], Onate et al [10], Bolintineanu et al [11], Avci
and Wriggers [12] and Zohdi [24-26]. Finally, we mention that oftentimes the
detrimental growth of channel walls (thus clogging feed lines) starts with the
adhesion of particles to the surfaces. This is a complex process, which is likely
to involve low fluid-induced shear stress (allowing particles stick to the walls,
Zohdi [27, 28], Zohdi et al [29]) and strongly coupled diffusive, chemical effects
and thermal effects. The application of such computational procedures to the
problems considered in this paper is under current investigation by the author.
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10 Appendix 1: Effective property bounds

The literature on methods to estimate the overall macroscopic properties of het-
erogeneous materials dates back at least to Maxwell [30,31] and Lord Rayleigh
[32], with a notable contribution being the Hashin-Shtrikman bounds [18-20].
The Hashin-Shtrikman bounds are the tightest possible bounds on isotropic
effective responses, generated from isotropic microstructures, where the volu-
metric data and phase contrasts of the constituents are the only data known.
For linearized elasticity applications, for isotropic materials with isotropic ef-
fective (mechanical) responses, the Hashin-Shtrikman bounds (for a two-phase
material) are as follows:

κ∗,− def
= κ1 +

ν2
1

κ2−κ1
+ 3(1−ν2)

3κ1+4G1

≤ κ∗ ≤ κ2 +
1− ν2

1
κ1−κ2

+ 3ν2

3κ2+4G2

def
= κ∗,+, (25)
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and for the shear modulus

G∗,− def
= G1 +

ν2
1

G2−G1
+ 6(1−ν2)(κ1+2G1)

5G1(3κ1+4G1)

≤ G∗ ≤ G2 +
(1− ν2)

1
G1−G2

+ 6ν2(κ2+2G2)
5G2(3κ2+4G2)

def
= G∗,+,

(26)
where κ2 and κ1 are the bulk moduli and G2 and G1 are the shear moduli
of the respective phases (κ2 ≥ κ1 and G2 ≥ G1), and where ν2 is the sec-
ond phase volume fraction. Such bounds are the tightest possible on isotropic
effective responses, with isotropic two phase microstructures, where only the
volume fractions and phase contrasts of the constituents are known. Note that
no geometric or statistical information is required for the bounds. For an au-
thoritative review of (a) the general theory of random heterogeneous media see,
for example, Torquato [21], (b) for more mathematical homogenization aspects,
see Jikov et al. [33], (c) for solid-mechanics inclined accounts of the subject see,
for example, Hashin [20], Mura [34] or Markov [35]. We note that numerical
methods have become the dominant tool to determining effective properties. In
particular, Finite Element-based methods are extremely popular, and we refer
the reader to Ghosh [36], Ghosh and Dimiduk [37] and Zohdi and Wriggers [15].

Finally, to derive Equation 15, one can take the limit of the particle phase
becoming rigid, i.e. the bulk and shear moduli tending towards infinity, κp → ∞
and Gp → ∞, signifying that the particles are much stiffer than the interstial
fluid, while simultaneously specifying that the interstitial fluid is incompressible,
i.e. κf/Gf → ∞ with Gf being finite. This yields,

G∗ = Gf (1 + 2.5
νp

1− νp
). (27)

One can then assign µf the value of Gf to obtain Equation 15. See, for example,
Abedian and Kachanov [38] and Sevostianov and Kachanov [39] for more details.

11 Appendix 2: Reduction in failure strength

due to voids

The failure of most structural materials is associated with reaching a critical
deviatoric stress. In order to determine the reduction in failure strength due to
voids, we denote the macroscopic effective elastic shear modulus as µ∗,voids and
the deviatoric stress at yield as Σ∗,voids,′. To start the analysis, we consider the
dense material to have met the failure stress (Σ′

m), thus yielding an expression
for the overall failure stress (Σ∗,voids,′)

〈σ′〉Ω = νv〈σ
′〉Ωv

+νm〈σ′〉Ωm
= νm〈σ′〉Ωm

= (1−νv)〈σ
′〉Ωm

= (1−νv)Σ
′

m = Σ∗,voids,′,
(28)

where Σ′

m is the stress at which the dense material fails. The effective shear

modulus needed to determine Σ∗,voids,′

2µ∗,voids can be estimated as in the the main
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body of the text. Thus, for the small overall strains at which macroscopic
failure occurs

2µ∗,voids〈ǫ′y〉Ω = 2µ∗,voids
Y

′,∗,voids ≈ 2µm(1−C(νv))Y
′,∗,voids = 〈σ′〉Ω ≈ Σ

′

m(1−νv)
(29)

and thus

Y
′,voids,∗ =

(
Σ

′

m

2µm

)(
1− νv

1− νvC(νv)

)

︸ ︷︷ ︸

def
= Φ(νv)

, (30)

where Y ′,voids,∗ is the macroscopic small strain deviator at initial failure. Thus,
we have

Y
′,voids,∗ ≈

Σ∗,voids,′

2µ∗,voids
≈

(
Σ′

m

2µm

)

Φ(νv), (31)

where the function Φ(νv) is a slowly increasing function of νv. It is noted that

since an upper bound was used in the construction of C(νv), and due to the

functional dependence of Φ on C(νv), Φ is an overestimation of the increase in

the overall failure strain. One can then assign the effective properties of the
slurry and binder to the matrix material, µ∗,no−voids = µm, Σ′

m = Σ′,no−voids,∗

and Y
′

m = Y
′,no−voids,∗. Thus, the change in the yield stress is

Σ′,voids,∗ = Σ′,no−voids,∗(1− νv) (32)

and the change in yield strain is

Y
′,voids,∗ ≈

(

Σ′,no−voids,∗

2µ∗,no−voids

)

Φ(νv) = Y
′,no−voids,∗Φ(νv). (33)
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