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Abstract—The primary objective of this work is to develop a
computational framework that efficiently simulates the time-
transient proliferation of cellular tissue, with heterogeneous
microstructure, utilizing two strongly-coupledconservation laws:

� Conservation Law 1: comprises (a) rate of
change of cells, (b) cellular migration, (c) cel-
lular proliferation controlled by a cell mitosis
regulating chemical, (d) cell apoptosis and
� Conservation Law 2: comprises (a) rate of

change of the cell mitosis chemical regulator,
(b) regulator diffusion, (c) regulator production
by cells and (d) regulator decay.

Specifically, a straightforward approach is developed
that researchers in the field can easily implement and
use as a computationally-efficient tool to study such
biological systems. Because multifield coupling is
present, a recursive, staggered, temporally-adaptive,
Finite Difference Time Domain scheme is developed to
resolve the interacting fields. The time-step adaptation
allows the numerical scheme to iteratively resolve the
changing physical fields by reducing the time-steps
during phases of the process when the system is
undergoing changes on relatively small time-scales or
enlarging the time-steps when the processes are rela-
tively slow. The spatial discretization grids are uniform
and dense, and the heterogeneous microstructure, is
embedded into the spatial discretization. The regular
grid allows one to generate a matrix-free iterative
formulation which is amenable to rapid computation
and minimal memory requirements, making it ideal for
laptop computation. Numerical examples are provided
to illustrate the approach.

Keywords—Cellular tissue, Proliferation, Regulation, Simu-

lation.

INTRODUCTION

This work is primarily interested in developing a
computational framework to enable relatively fast and
efficient computation of strongly coupled fields asso-
ciated with cellular tissue proliferation and regulation.
The overall system is broken into two main subsys-
tems, based on two conservation laws:

� Conservation Law 1: comprises (a) rate of
change of cells, (b) cellular migration, (c) cel-
lular proliferation controlled by a cell mitosis
regulating chemical, (d) cell apoptosis and
� Conservation Law 2: comprises (a) rate of

change of the cell mitosis chemical regulator,
(b) regulator diffusion, (c) regulator production
by cells and (d) regulator decay.

Throughout the construction of the model, we consider
inifitesimal deformations, _ðÞ ¼ @ðÞ

@t j. In other words, the
domaindoes not change it shapeor geometrywith changes
in concentration. The ‘‘cell’’ balance (c) per unit volume
and a cell mitosis regulating chemical (s) denoted by the
normalized concentration of c (cells), in an arbitrary
subvolume of material contained within X, denoted x,
consists of a concentration (storage) term c, an inward
normal migration flux term, �m � n, a proliferation term,
rðsÞ and a cell apoptosis term, sðcÞ, leading to
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and simultaneously the balance of a cell mitosis regu-
lating chemical (s)
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where s is the cell mitosis regulator concentration,
�f � n is an inward normal migration flux term, pðcÞ is a
production term and cðsÞ is a regulator loss term. After
using the divergence theorem on the flux terms, since
the volume x is arbitrary, one obtains a diffusion-
reaction model in strong form (assuming a Fickian-
type law, m ¼ �ID � rc and f ¼ �IK � rs)

@c

@t
¼ r � ID � rcþ rðsÞ � sðcÞ ð3Þ

and simultaneously the balance of a mitosis regulating
chemical (s)

@s

@t
¼ r � IK � rsþ pðcÞ � cðsÞ: ð4Þ

There is a large body of literature on the construction
of the functions rðsÞ, sðcÞ, pðcÞ and cðsÞ for specific
types of problems, such as wound healing. See Mur-
ray33 for an extensive review, with early experimental
studies dating back at least to Lindquist28 Van den
Brenk,43 Crosson et al.,6 Zieske et al.,47 Franz et al.7

and Sherratt and Murray.40 Such a coupled system can
represent a variety of biological systems, such as
growth in biological scaffolding, proliferation of
damaged cellular tissue, etc. The modeling of this
process has a close similarity to multicomponent dif-
fusion-reaction industrial processes, and we refer the
reader to Zohdi.48–50

The objective is to utilize the coupled governing
equations (Eqs. (3), (4)) to model the time-transient
response of biological material systems, where the
media may have complex heterogeneous microstruc-
ture. Accordingly, a computational framework that
efficiently resolves the strongly coupled time-transient
cell and regulator fields that arise is developed. A
recursive, staggered, temporally-adaptive, FDTD (Fi-
nite Difference Time Domain) scheme is developed
that allows the numerical scheme to iteratively resolve
the changing physical fields by reducing the time-steps
during phases of the process when the system is
undergoing changes on relatively small time-scales or
to enlarge the time-steps when the processes are rela-
tively slow. The complex heterogeneous microstructure
is embedded into a dense regular spatial grid. The

regular grid allows one to generate a matrix-free iter-
ative formulation which is amenable to rapid compu-
tation and minimal memory requirements, making it
ideal for laptop computation. Numerical examples are
provided to illustrate the approach.

Remark Although the approach taken in this work is
to directly discretize the system, we remark that there
are a number of methods to estimate the overall
effective (macroscopic) properties of materials
consisting of a matrix, containing a distribution of
inhomogeneities, pores or cracks. The literature on this
topic is quite extensive, dating back to the early works
of Maxwell,30, and Lord Rayleigh.36 For a wide-
ranging overview of random heterogeneous media, see
Torquato,41 for more mathematical homogenization
aspects, see Jikov et al.,21 for solid-mechanics issues,
see Hashin,13 Markov,29 Mura,32 Nemat-Nasser and
Hori,34 Huet,16 for analyses of defect-laden, porous
and cracked media, see Kachanov,22 Kachanov,
Tsukrov and Shafiro,23 Kachanov and Sevostianov,24

Sevostianov, Gorbatikh and Kachanov38 Sevostianov
and Kachanov39 and for computational aspects, see
Zohdi and Wriggers.51

NUMERICAL SIMULATION OF THE COUPLED

SYSTEM

The present section develops a flexible and robust
solution strategy to resolve the coupled system. There
are two main components to the computational
approach:

� Spatio-temporal discretization of the diffusive
continuum model,
� Iterative staggering to solve the coupled system,

whereby the time-steps are adaptively adjusted
to control the error associated with the incom-
plete resolution of the concentration fields.

Discretization of the c- and s-Fields

The concentration field will require spatial discreti-
zation with some type of mesh, for example using a
finite difference, finite volume or finite element method.

Temporal Approximation

For the concentration field, we write

@c

@t
¼ r � ID � rcþ rðsÞ � sðcÞ ¼def L: ð5Þ

We discretize for time=tþ /Dt, and using a trape-
zoidal ‘‘/� scheme’’ (0 � / � 1)
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cðtþ DtÞ � cðtÞ þ Dt /Lðtþ DtÞ þ ð1� /ÞLðtÞð Þ: ð6Þ

Similarly for s,

@s

@t
¼ r � IK � rsþ pðcÞ � cðsÞ ¼defM: ð7Þ

We discretize for time=tþ /Dt, and using a trape-
zoidal ‘‘/� scheme’’ (0 � / � 1)

sðtþ DtÞ � sðtÞ þ Dt /Mðtþ DtÞ þ ð1� /ÞMðtÞð Þ:
ð8Þ

Spatial Discretization: Spatial Finite Difference finite
difference Stencils

The following standard approximations are used:

1. For the first derivative of a primal variable c at
ðx1; x2; x3Þ:
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ð9Þ
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ð10Þ

where we have used

IDðx1 þ
Dx1
2
; x2; x3Þ �

1

2
IDðx1 þ Dx1; x2; x3Þð

þIDðx1; x2; x3ÞÞ
ð11Þ

and

IDðx1 �
Dx1
2
; x2; x3Þ �

1

2
IDðx1; x2; x3Þð

þIDðx1 � Dx1; x2; x3ÞÞ
ð12Þ

Iterative (Implicit) Solution Method

Implicit time-stepping methods, with time step size
adaptivity, built on approaches found in Zohdi,48–51

will be used throughout the upcoming analysis. In
order to introduce basic concepts, we consider a first
order vector-valued differential equation

_U ¼ FðUÞ; ð13Þ

which, after being discretized using a trapezoidal
‘‘/-method’’ (0 � / � 1)

ULþ1 ¼ UL þ Dt /FðULþ1Þ þ ð1� /ÞFðULÞ
	 


; ð14Þ

yields the following abstract form

AðULþ1Þ ¼ B: ð15Þ

It is convenient to write

AðULþ1Þ � B ¼ GðULþ1Þ �ULþ1 þR ¼ 0; ð16Þ

where R is a remainder term that does not depend on
the solution, i.e., R 6¼ RðULþ1Þ. A straightforward
iterative scheme iterative scheme can be written as

ULþ1;K ¼ GðULþ1;K�1Þ þ R; ð17Þ

where K ¼ 1; 2; 3; ::: is the index of iteration within
time step Lþ 1. The convergence of such a scheme is
dependent on the behavior of G. Namely, a suffi-
cient condition for convergence is that G is a con-
traction mapping for all ULþ1;K, K ¼ 1; 2; 3::: In order
to investigate this further, we define the iteration error
as

-Lþ1;K ¼defULþ1;K �ULþ1: ð18Þ

A necessary restriction for convergence is iterative self
consistency, i.e., the ‘‘exact’’ (discretized) solution
must be represented by the scheme

GðULþ1Þ þ R ¼ ULþ1: ð19Þ

Enforcing this restriction, a sufficient condition for
convergence is the existence of a contraction mapping

-Lþ1;K ¼ jjULþ1;K �ULþ1jj ¼ jjGðULþ1;K�1Þ � GðULþ1Þjj
� gLþ1;KjjULþ1;K�1 �ULþ1jj; ð20Þ

where, if 0 � gLþ1;K<1 for each iteration K, then
-Lþ1;K ! 0 for any arbitrary starting value ULþ1;K¼0,
as K!1. This type of contraction condition is suf-
ficient, but not necessary, for convergence. Inserting
these approximations into _U ¼ FðUÞ leads to

ULþ1;K � Dt /FðULþ1;K�1Þ
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðULþ1;K�1Þ

þ Dtð1� /ÞFðULÞ þUL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

;

ð21Þ

whose contraction constant is scaled by g / /Dt.
Therefore, if convergence is slow within a time step, the
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time step size, which is adjustable, can be reduced by
an appropriate amount to increase the rate of con-
vergence. Decreasing the time step size improves the
convergence, however, we want to simultaneously
maximize the time-step sizes to decrease overall com-
puting time, while still meeting an error tolerance on
the numerical solution’s accuracy. In order to achieve
this goal, we follow an approach found in Zohdi48

originally developed for continuum thermo-chemical
multifield problems in which one first approximates

gLþ1;K � SðDtÞp ð22Þ

(S is a constant) and secondly one assumes the error
within an iteration to behave according to

ðSðDtÞpÞK-Lþ1;0 ¼ -Lþ1;K; ð23Þ

K ¼ 1; 2; :::, where -Lþ1;0 is the initial norm of the
iterative error and S is intrinsic to the system.1 Our
goal is to meet an error tolerance in exactly a preset
number of iterations. To this end, one writes

ðSðDttolÞpÞKd-Lþ1;0 ¼ Ctol; ð24Þ

where Ctol is a (coupling) tolerance and where Kd is the
number of desired iterations.2 If the error tolerance is
not met in the desired number of iterations, the con-
traction constant gLþ1;K is too large. Accordingly, one
can solve for a new smaller step size, under the
assumption that S is constant,

Dttol ¼ Dt
ð Ctol

-Lþ1;0Þ
1

pKd

ð-Lþ1;K

-Lþ1;0Þ
1
pK

 !
: ð25Þ

The assumption that S is constant is not critical, since
the time steps are to be recursively refined and unre-
fined throughout the simulation. Clearly, the expres-
sion in Eq. (25) can also be used for time step
enlargement, if convergence is met in less than Kd

iterations.3 Specifically, the solution steps are, within a
time-step:

� (1): Start a global fixed iteration (set
i ¼ 1; :::;Nn (node counter) and K ¼ 0 (iteration
counter))
� (2): If i>Nn then go to (4)
� (3): If i � Nn then:
(a) Compute the concentration cLþ1;Ki

(b) Go to (2) for the next node (i ¼ iþ 1)

� (4): Repeat steps 1-3 for the nodes, i ¼ 1; :::;Nn.
� (5): Measure error (normalized) quantities

(where wc is a weight on the cell contribution
and ws is a weight on the regulator contribu-
tion)
(a) -Lþ1;K ¼def wc

PNn

i¼1 jjc
Lþ1;K
i � cLþ1;K�1i jjPNn

i¼1 jjc
Lþ1;K
i jj

þ wsPNp

i¼1 jjs
Lþ1;K
i

�sLþ1;K�1
i

jjPNp

i¼1 jjs
Lþ1;K
i

jj

(b) ZK ¼
def-Lþ1;K

TOL
where TOL is an error toler-

ance.
(c) KK ¼

def ð TOL
-Lþ1;0Þ

1
pKd

ð-Lþ1;K

-Lþ1;0Þ
1
pK

 !
.

� (6): If the tolerance is met: ZK � 1 and K<Kd

then
(a) Increment time: t ¼ tþ Dt
(b) Construct the next time step:
ðDtÞnew ¼ KKðDtÞold,

(c) Select the minimum size:
Dt ¼MINððDtÞlim; ðDtÞnewÞ and go to (1)

� (7): If the tolerance is not met: ZK>1 and
K<Kd then
(a) Update the iteration counter: K ¼ Kþ 1
(b) Reset the node counter: i ¼ 1
(c) Go to (2)

� (8): If the tolerance is not met ðZK>1Þ and
K ¼ Kd then
(a) Construct a new time step:
ðDtÞnew ¼ KKðDtÞold

(b) Restart at time t and go to (1)

Time-step size adaptivity is critical, since the system’s
dynamics can dramatically change over the course of
time, possibly requiring quite different time step sizes
to control the iterative error. However, to maintain the
accuracy of the time-stepping scheme, one must respect
an upper bound dictated by the discretization error,
i.e., Dt � Dtlim. Note that in step (5), KK may enlarge
the time-step if the error is lower than the preset
tolerance. At a given time, once the process is
complete, the time is incremented forward and the
process is repeated. The overall goal is to deliver
solutions where the iterative error is controlled and the
temporal discretization accuracy dictates the upper
limit on the time step size (Dtlim). Clearly, there are
various combinations of solution methods that one can
choose from. For example, for the overall field
coupling, one may choose implicit or explicit stagger-
ing and within the staggering process, either implicit
(0</ � 1) or explicit time-stepping (/ ¼ 0), and, in
the case of implicit time-stepping, iterative or direct
solvers. Furthermore, one could employ internal iter-
ations for each field equation, then update, more
sophisticated metrics for certain components of the

1For the class of problems under consideration, due to the quadratic

dependency on Dt, p � 1.
2Typically, Kd is chosen to be between five to ten iterations, although

this is problem and analyst dependent.
3At the implementation level, since the exact solution is unknown,

the following relative error term is used, -Lþ1;K ¼defULþ1;K �ULþ1;K�1.
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error, etc. For example, we utilized an error measure
that used the concentrations at the nodes of the Finite
Difference grid, but other metrics are certainly possi-
ble. For details see Zohdi.48–51

Remark 1 Because the internal system solvers within
the staggering scheme are also iterative and use the
previously converged solution as their starting value to
solve the system of equations, a field that is relatively
insensitive at given stage of the simulation will
converge in very few internal iterations (perhaps even
one). Staggering schemes are widely used in the
computational mechanics literature, dating back, at
least, to Zienkiewicz45 and Zienkiewicz et al.46 For in
depth overviews, see the works of Lewis and Schrefler
(Lewis et al.26 and Lewis and Schrefler27) and a series
of works by Schrefler and collaborators: Schrefler,37

Turska and Schrefler,42 Bianco et al.3 and Wang and
Schrefler.44

Remark 2 At the length-scales of interest, it is
questionable whether the ideas of a sharp material
interface are justified. Accordingly, we simulated the
system with and without Laplacian smoothing,
whereby one smooths the material data by post-
processing the material data, node by node, to
produce a smoother material representation, for
example, for the cell diffusivity, ÎD

r2
XID ¼ 0) ÎDi;j;k ¼

1

6
IDiþ1;j;k þ IDi�1;j;k þ IDi;jþ1;k
	

þIDi;j�1;k þ IDi;j;kþ1 þ IDi;j;k�1


:

ð26Þ

The same was done for IK by enforcing r2
XIK ¼ 0. The

simulations were run with and without data smooth-
ing, with the results being negligibly different for suf-
ficiently fine meshes (Fig. 1).

NUMERICAL EXAMPLES

As an example, we consider a cubical domain with
an initial interior concentration of zero cells and zero
regulator. We inject both cells and regulator at a given
location at the top (Fig. 2). The injection site is ellip-
tical and has controlled concentration of both cells and
regulator over time. The boundary conditions for the
cells and regulator were held to be zero, other than at
the injection site. We considered two scenarios: (a) a
benchmark domain where the medium is homogeneous
and (b) a heterogeneous domain where the medium has
a microstructure comprised of randomly distributed
spheres (occupying approximately 25 % volume frac-
tion) in a homogeneous matrix. The following

parameters were used (with standard metric units used
throughout):

� size of the domain was 0:01� 0:01� 0:01 m,
� injection site, a controlled cell concentration

cðtÞ ¼ coe
at, co ¼ 1, a ¼ 0:01,

� injection site, a controlled regulator concen-
tration sðtÞ ¼ soe

at, so ¼ 1, a ¼ 0:01,
� injection site was 0:005� 0:00125 m (elliptical

cross-section) and 0:0025 m deep,
� total simulation time was T ¼ 20 s,
� cell proliferation term, rðsÞ ¼ þr̂s, with a dif-

ferent r̂ for each material phase,
� cell apoptosis term, sðcÞ ¼ �ŝc, with a different

ŝ for each material phase,
� regulator production term, pðcÞ ¼ þp̂c, with a

different p̂ for each material phase,
� regulator loss term, cðsÞ ¼ �ĉs, with a different

ĉ for each material phase,
� homogeneous case, r̂o ¼ 20, r̂1R ¼ r̂1

r̂o
¼ 10,

� homogeneous case, ŝo ¼ 0:1, ŝ1R ¼ ŝ1
ŝo
¼ 10,

� homogeneous case, p̂o ¼ 0:001, p̂1R ¼ p̂1
p̂o
¼ 100,

� homogeneous case, ĉo ¼ 0:1, ĉ1R ¼ ĉ1
ĉo
¼ 100,

� homogeneous case, ID ¼ D1, D ¼ 10�6,
� homogeneous case, IK ¼ K1, K ¼ 10�7,
� heterogeneous case, r̂o ¼ 20, r̂1R ¼ r̂1

r̂o
¼ 10,

r̂2R ¼ r̂2
r̂o
¼ 1,

� heterogeneous case, ŝo ¼ 0:1, ŝ1R ¼ ŝ1
ŝo
¼ 10,

ŝ2R ¼ ŝ2
ŝo
¼ 1,

� heterogeneous case, p̂o ¼ 0:001, p̂1R ¼ p̂1
p̂o
¼ 100,

p̂2R ¼ p̂2
p̂o
¼ 1,

SURFACE

C
INJECTION

HETEROGENEOUS MATERIAL PROPERTIES

FIGURE 1. The model problem with heterogeneous micro-
structure. This could represent scaffolding or simply hetero-
geneous tissue. The injection site is given high concentration
of cells and regulator, for example modeling an injection of
topological additive.
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� heterogeneous case, ĉo ¼ 0:1, ĉ1R ¼ ĉ1
ĉo
¼ 100,

ĉ2R ¼ ĉ2
ĉo
¼ 1,

� heterogeneous case, ID1 ¼ D11, D1 ¼ 10�6 and
ID2 ¼ D21, D2 ¼ 10�7,

� heterogeneous case, IK1 ¼ K11, K1 ¼ 10�7 and
IK2 ¼ K21, K2 ¼ 10�8.

The time steps were initially started to be quite small
in order to allow the system to evolve the time step
size during the beginning of the simulation. A
trapezoidal time stepping parameter of / ¼ 0:5 was
chosen. In this case, we started the time-step size at
0:001 s and allowed it to be enlarged up to 20 times
that size, if the algorithm and error estimates
warranted it (which was the case in the examples
given). During the computations with the heteroge-
neous media, the spatial discretization meshes were
repeatedly refined until the solutions did not exhibit
any more sensitivity to further refinement of the
grid-spacing. We started with meshes such as a
21� 21� 21 mesh, arising from having a cubical
mesh with 10 nodes from the centerline plane
of symmetry and one node in the middle, and then
repeatedly refined in the following sequential
manner:

FIGURE 3. Without microstructure: from left to right and top to bottom: (a) The average concentration of cells over time. (b) The
average concentration of regulator over time. (c) The evolution of the time-step size over time.

z
= CELLS

= REGULATOR

x

y

SITE
INJECTION

FIGURE 2. The cells and regulator are injected at the loca-
tion indicated. The boundary and initial conditions are zero for
both fields (other than at the injection site).
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1. Mesh # 1: a 21� 21� 21 mesh, which has
9261 degrees of freedom per field, for a total of
18,522 degrees of freedom,

2. Mesh # 2: a 41� 41� 41 mesh, which has
68,921 degrees of freedom per field, for a total
of 137,842 degrees of freedom,

3. Mesh # 3: a 61� 61� 61 mesh which has
226,981 degrees of freedom per field, for a total
of 453,962 degrees of freedom, etc.

Approximately between a 41-level and a 61-level mesh,
the results stabilized, indicating that the results are
essentially free of any appreciable numerical error. As

FIGURE 4. Without microstructure: from left to right and top to bottom: Cell concentration (c) and growth from an injection at the
surface. Please note that the color scale is different than that for the regulator concentration (s).
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a type of initial benchmark problem, Case 1 illustrates
the solution in a homogeneous (benchmark) medium.
Figure 3 depicts (a) The average concentration of cells
over time and (b) The average concentration of
regulator over time. The solution exhibits a symmetry,
due to the uniform microstructure. Figure 4 shows

cross-sections of the concentration of cells domain
over time, while Fig. 5 illustrates cross-sections of the
concentration of regulator domain over time. Case 2
illustrated the solution in a heterogeneous medium (25
% volume fraction of randomly distributed spherical
inclusions), where the (lower-permeability) properties

FIGURE 5. Without microstructure: from left to right and top to bottom: regulator (s) concentration and growth from an injection
at the surface. Please note that the color scale is different than that for the cell concentration (c).
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were given previously in the itemized list. Figure 6
illustrates the morphology of the microstructure as
resolved by the grid. Figure 7 depicts (a) The average
concentration of cells over time, (b) The average
concentration of regulator over time and (c) The
evolution of the time-step size over time. Figure 8
shows cross-sections of the concentration of cells
domain over time. Figure 9 illustrates cross-sections
of the concentration of regulator domain over time.
Clearly, the lower permeability microstructure impedes
the process, relative to the uniform microstructure-free
material, resulting in a much more complex evolution
of both the cell and regulator concentrations. It is
important to note that for the homogeneous case, the
fields did achieve steady state values in the time period
chosen. In order to make comparisons between the
homogeneous and heterogeneous media cases, the
heterogeneous media case was simulated for the same
time duration as the homogeneous one. For the
heterogeneous case, the c and s fields do not achieve
steady state in the same time period as the homoge-
neous case. The computations are designed so that
they take a few minutes on a standard laptop. The
selected parameter choices were provided to illustrate
the overall working on the model, and a wide variety of
parameter choices are possible, depending on the
application. This is discussed further next.

DISCUSSION AND SUMMARY

In summary, the purpose of this paper was to
present a flexible computational modeling framework
approach, which can be numerically implemented with
minimal effort by researchers interested in the simula-

tion of systems comprised of the growth of cells cou-
pled to a cell mitosis regulator. In the examples
provided, the time steps were set purposely small at the
start to allow the system to determine the time step
size. The spatial discretization grids were uniform and
dense, and the heterogeneous microstructure, was
embedded into spatial discretization. The regular grid
allows one to generate a matrix-free iterative formu-
lation which is amenable to rapid computation and
minimal memory requirements, making it ideal for
laptop computation. Numerical examples were pro-
vided to illustrate the approach for a test set of
parameters. The framework is flexible enough to allow
researchers to input virtually any type of cell and cell
regulator interaction. However, in the present formu-
lation, notably absent are the effects of deformation
and stress in the system. At a minimum, this would
require a third field equation governing the balance of
linear momentum, rx � rþ f ¼ q _v, where r is the
Cauchy stress, f are the body forces, q is the density
and v is the velocity, in addition to constitutive laws for
soft tissue (see the extensive works of Fung,8, Hol-
zapfel,14 or Humphrey,18). At finite deformations, the
previous conservation laws can be generatived in the
following manner:

d

dt

Z
x
cdx¼ d

dt

Z
xo

cJdxo ¼
Z

xo

dc

dt
Jþ c

dJ

dt

� �
dxo

¼
Z

xo

dc

dt
Jþ cJrx � v

� �
dxo

¼
Z

x

@c

@t
þ v � rxcþ crx � v

� �
dx¼

Z
x

@c

@t
þrx � ðcvÞ

� �
dx

ð27Þ

FIGURE 6. With microstructure: (a) The morphology of the microstructure and (b) The morphology of the microstructure and
mesh.
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thus

@c

@t
þrx � ðcvÞ ¼ r � ID � rcþ rðsÞ � sðcÞ: ð28Þ

and

@s

@t
þrx � ðsvÞ ¼ r � IK � rsþ pðcÞ � cðsÞ: ð29Þ

Incorporation of the deformation effects is currently
under investigation by the author. Clearly, specific
material data is needed for tissue. In this regard, we
again refer the reader to Murray33 for an extensive re-
view, with early experimental studies dating back at
least to Lindquist28 Van den Brenk,43 Crosson et al.,6

Zieske et al.,47 Franz et al.7 and Sherratt and Murray.40

Generally, because the distribution of water, biological
fluids and chemical species within such tissue are
dependent on the deformation of the solid, coupled
multifield computations are necessary to realistically

simulate such systems. For example, in many models of
muscle tissue, it is usually assumed that the response
depends on the concentration of a mobile chemical
species present, for example, intracellular calciumCa2þ,
and U is the stretch along the muscle fiber, relative to a
reference sarcomere length. A basic form suggested is
r ¼ rðCa2þ;UÞ, where r is the total Cauchy stress
(active and passive), which combines the mechanical
(passive) contribution and the actively generated mus-
cle tension. We refer the reader to Rachev and Hay-
ashi,35 Humphrey,18,19 Klepach et al.25 and Ambrosi
et al.1 for reviews. Finally, we comment that the tech-
nique used in this paper is clearly not the only approach
to describe tissue regeneration. There are other
approaches used in the literature to study tissue
regeneration. The literature in this field is quite exten-
sive, for example with applications to bone, see Geris
et al.,11 Isaksson et al.,20 Gomez-Benito et al.,12 Bailon
and van der Meulen,2 Checa et al.5 and Carlier et al.4

FIGURE 7. With microstructure: from left to right and top to bottom: (a) The average concentration of cells over time. (b) The
average concentration of regulator over time. (c) The evolution of the time-step size over time.
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FIGURE 8. With microstructure: from left to right and top to bottom: Cell concentration (c) and growth from an injection at the
surface. Please note that the color scale is different than that for the regulator concentration (s).

Modeling and Simulation of Coupled Cell Proliferation



REFERENCES

1 Ambrosi, D., Ateshian, G. A., Arruda, E. M., Cowin, S.
C., Dumais, J., Goriely, A., Holzapfel, G. A., Humphrey,
J. D., Kemkemer, R., Kuhl, E., Olberding. J. E., Taber, L.
A. and Garikipati, K. Perspectives on biological growth
and remodeling. J. Mech. Phys. Solids 59:863–883, 2011.
2Bailon-Plaza, A., and M. van der Meulen. Benefical effects
of moderate, early loading and adverse effects of delayed

or excessive loading on bone healing. J. Biomech.
36(8):1069–1077, 2003.
3Bianco, M., G. Bilardi, F. Pesavento, G. Pucci, and B. A.
Schrefler. A frontal solver tuned for fully coupled non-
linear hygro-thermo-mechanical problems. Int. J. Numer.
Methods Eng. 57:1801–1818, 2003.
4Carlier, A., L. Geris, K. Bentley, G. Carmeliet, P. Car-
meliet, and H. Van Oosterwyck. (2012). MOSAIC: a
multiscale model of osteogenesis and sprouting angiogen-

FIGURE 9. With microstructure: from left to right and top to bottom: Regulator (s) concentration and growth from an injection at
the surface. Please note that the color scale is different than that for the cell concentration (c).

ZOHDI



esis with lateral inhibition of endothelial cells. PLoS
Comput. Biol. 8(10), 2012.
5Checa, S., P. J. Prendergast, and G. N. Duda. Inter-species
investigation of the mechano-regulation of bone healing:
comparison of secondary bone healing in sheep and rat. J.
Biomech. 44:1237–1245, 2011.
6Crosson, C. E., S. D. Klyce, and R. W. Beuerman. Epi-
thelial wound closure in rabbit cornea wounds
invest.Ophthalmol Vis. Sci. 27:464–473, 1986.
7Franz, J. M., B. M. Dupuy, H. E. Kaufman, and R. W.
Beuerman. The effects of collagen shields on epithelial
wound healing in rabbits. Am. J. Ophthalmol. 108:524–528,
1989.
8Fung, Y. C. Elasticity of soft tissues in simple elongation.
Am. J. Physiol. 28:1532–1544, 1967.
9Fung, Y. C. Biorheology of soft tissues. Biorheology
10:139–155, 1973.

10Fung, Y. C. (1983). On the foundations of biomechanics.
ASME J. Appl. Mech. 50, 1003–1009.

11Geris, L., K. Van damme, I. Naert, J. Van der Slotena, J.
Duyck, and H. Van Oosterwyck. Application of mechan-
oregulatory models to simulate peri-implant tissue forma-
tion in an in vivo bone chamber. J. Biomech. 41:145–154.

12Gomez-Benito, M. J., J. M. Garcia-Aznar, J. H. Kuiper,
and M. Doblare. Influence of fracture gap size on the
pattern of long bone healing: a computational study. J.
Theor. Biol. 235:105–119, 2005.

13Hashin, Z. Analysis of composite materials: a survey.
ASME J. Appl. Mech. 50:481–505, 1983.

14Holzapfel, G. A. Biomechanics of soft tissue. The hand-
book of materials behavior models. Volume III, Multi-
physics behaviors, Chap. 10, Composite Media,
Biomaterials, edited by J. Lemaitre. Boston: Academic
Press, pp. 1049–1063, 2001.

15Holzapfel, G. A., and R. W. Ogden. Biomechanical Mod-
eling at the Molecular, Cellular and Tissue Levels.
Springer-Verlag, 2009.

16Huet, C. Universal conditions for assimilation of a heter-
ogeneous material to an effective medium. Mech. Res.
Commun. 9 (3), 165–170, 1982.

17Huet, C. On the definition and experimental determination
of effective constitutive equations for heterogeneous
materials. Mech. Res. Commun. 11 (3), 195–200, 1984.

18Humphrey, J. D. Cardiovascular Solid Mechanics. Cells,
Tissues, and Organs. New York: Springer-Verlag, 2002.

19Humphrey, J. D. Continuum biomechanics of soft biolog-
ical tissues. Proc. R. Soc. 459(2029):3–46, 2003.

20Isaksson, H., C. van Donkelaar, and K. Ito. Sensitivity of
tissue differentiation and bone healing predictions to tissue
properties. J. Biomech. 26, 555–564, 2009.

21Jikov, V. V., S. M. Kozlov, and O. A. Olenik. Homoge-
nization of Differential Operators and Integral Function-
als. Springer-Verlag, 1994.

22Kachanov, M. Elastic solids with many cracks and related
problems. Advance Applied Mechanics, vol. 30. New York:
Academic Press, 1993, p. 259.

23Kachanov, M., I. Tsukrov, and B. Shafiro. Effective
moduli of solids with cavities of various shapes. Appl.
Mech. Rev. 47:S151–S174, 1994.

24Kachanov, M., and I. Sevostianov. On the quantitative
characterization of microstructures and effective proper-
ties. Int. J. Solids Struct. 42, 309–336, 2005.

25Klepach, D., L. C. Lee, J. Wenk, M. Ratcliffe, T. I. Zohdi,
J. Navia, G. Kassab, E. Kuhl, and J. M. Guccione. Growth
and remodeling of the left ventricle: a case study of myo-

cardial infarction and surgical ventricular restoration.
Mech. Res. Commun. 42:134–141, 2012.

26Lewis, R. W., B. A. Schrefler, and L. Simoni. Coupling
versus uncoupling in soil consolidation. Int. J. Numer.
Anal. Methods. Geomech 15:533–548.

27Lewis, R. W., and B. A. Schrefler. The Finite Element
Method in the Static and Dynamic Deformation and
Consolidation of Porous Media. 2nd edn. Wiley Press,
1998.

28Lindquist, G. The healing of skin defects: an experimental
study of the white rat. Acta Chir. Scand. 94:1–163, Sup-
plement 107, 1946.

29Markov, K. Z. Elementary micromechanics of heteroge-
neous media. In: Heterogeneous Media: Micromechanics
Modeling Methods and Simulations, edited by K. Z. Mar-
kov, and L. Preziozi. Boston: Birkhauser, 2000, pp. 1–162.

30Maxwell, J. C. On the dynamical theory of gases. Philos.
Trans. Soc. Lond. 157:49, 1867.

31Maxwell, J. C. A Treatise on Electricity and Magnetism.
3rd. edn. Oxford: Clarendon Press, 1873.

32Mura, T. Micromechanics of Defects in Solids, 2nd edn.
Kluwer Academic Publishers, 1993.

33Murray, J. D. Mathematical Biology, 3rd edn. Springer
Verlag, 2004.

34Nemat-Nasser, S., and M. Hori. Micromechanics: Overall
Properties of Heterogeneous Solids. 2nd edn. Amsterdam:
Elsevier, 1999.

35Rachev, A., and K. Hayashi. Theoretical study of the ef-
fects of vascular smooth muscle contraction on strain and
stress distributions in arteries. Ann. Biomed. Eng. 27:459–
468, 1999.

36Rayleigh, J. W. On the influence of obstacles arranged in
rectangular order upon properties of a medium. Philos.
Mag. 32:481–491, 1892.

37Schrefler, B. A. A partitioned solution procedure for geo-
thermal reservoir analysis. Commun. Appl. Numer. Meth-
ods. 1:53–56, 1985.

38Sevostianov, I., L. Gorbatikh, and M. Kachanov. Recov-
ery of information of porous/microcracked materials from
the effective elastic/conductive properties. Mater. Sci. Eng.
A. 318:1–14, 2001.

39Sevostianov, I., and M. Kachanov. Connections between
elastic and conductive properties of heterogeneous materi-
als. Adv. Appl. Mech. 42:69–253, 2008.

40Sherratt, J. A., and J. D. Murray. Models of epiderma
wound healing. Proc. R. Soc. Lond. B. 241:29–36, 1990.

41Torquato, S. Random Heterogeneous Materials: Micro-
structure and Macroscopic Properties. New York: Spring-
er-Verlag, 2002.

42Turska, E., and B. A. Schrefler. On Consistency, Stability
and Convergence of Staggered Solution Procedures. Rend.
Mat. acc. Rome: Lincei, S. 9, v. 5, pp. 265–271.

43Van den Brenk, H. A. S Studies in restorative growth
processes in mammalian wound healing. Br. J. Surg.
43:525–550, 1956.

44Wang, X., and B. A. Schrefler. A multifrontal parallel
algorithm for coupled thermo-hydro-mechanical analysis
of deforming porous media. Int. J. Numer. Methods. Eng.
43:1069–1083, 1998.

45Zienkiewicz, O. C. Coupled problems & their numerical
solution. In: Numerical Methods in Coupled Systems,
edited by R. W. Lewis, P. Bettes, and E. Hinton. Chich-
ester: Wiley, pp. 35–58, 1984.

46Zienkiewicz, O. C., D. K. Paul, and A. H. C. Chan.
Unconditionally stable staggered solution procedure for

Modeling and Simulation of Coupled Cell Proliferation



soil-pore fluid interaction problems. Int. J. Numer. Methods
Eng. 26:1039–1055, 1988.

47Zieske, J. D., S. C. Higashij, S. J. Spurmic, and I. K.
Gipson. Biosynthetic response of the rabbit cornea to a
keratectomy wound. Invest. Ophthalmol. Vis. Sci. 28:1668–
1677, 1987.

48Zohdi, T. I. An adaptive-recursive staggering strategy for
simulating multifield coupled processes in microheterogeneous
solids. Int. J. Numer. Methods Eng. 53:1511–1532, 2002.

49Zohdi, T. I. Modeling and simulation of a class of coupled
thermo-chemo-mechanical processes in multiphase solids.
Comput. Methods Appl. Mech. Eng. 193/6-8:679–699, 2004.

50Zohdi, T. I. (2010). Simulation of coupled microscale
multiphysical-fields in particulate-doped dielectrics with
staggered adaptive FDTD. Comput. Methods Appl. Mech.
Eng. 199:79–101, 2010.

51Zohdi, T. I., and P. Wriggers. Introduction to Computa-
tional Micromechanics. Springer-Verlag, 2008.

ZOHDI


	Modeling and Simulation of Coupled Cell Proliferation and Regulation in Heterogeneous Tissue
	Abstract
	Introduction
	Numerical Simulation of the Coupled System
	Discretization of the c- and s-Fields
	Temporal Approximation
	Spatial Discretization: Spatial Finite Difference finite difference Stencils

	Iterative (Implicit) Solution Method

	Numerical Examples
	Discussion and Summary
	References


