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SUMMARY

In this paper, we propose a simple computational framework for the rapid simulation of the delivery of
substances into cells. Our approach treats the substances and the cell membrane as a collection of particles
forming a discrete dynamical system, which is described by Newtonian equations in a purely mechanistic
way. Detailed aspects about the modeling of particle interactions are discussed and resolved. The main
advantage of such an approach is that it can offer a good qualitative picture of the delivery mechanism with-
out the need to resort to detailed descriptions of the complex intermolecular interactions that are observed at
small scales of the cell membrane. A numerical time integration scheme is formulated for solution of the
system dynamics, and examples of simulations are provided. Computational particle-based models render
reliable and fast simulation tools. We believe they can be very useful to help advance the design of delivery
systems. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND PROBLEM DEFINITION

The delivery of substances into cells is an important tool in modern cell biology. Drugs, proteins
(antibodies or enzymes), genetic material (RNA or DNA), biological stains, and many other
materials are often desired to be transported to the interior of the cells to undertake a specific task.
The cell membrane constitutes the main physical barrier in this regard (in the case of plant cells,
there is also the cell wall). Some of the existing technologies to accomplish such transport include
uptake mechanisms, fusion mechanisms, use of infectious agents, use of micro-injection and nano-
injection devices, and particle bombardment guns. None of these, however, is free from disadvan-
tages or limitations.
In recent years, technologies involving particle bombardment guns (also commonly referred to as

biolistic or bioballistic systems), whose shots consist of either single particles or jets of particles,
have been preferred in many applications. This is partly due to their ability to deal with (i) cells both
in vitro and in vivo, that is, cells either in suspension or in their natural environment, and (ii) groups
of cells simultaneously, instead of only single cells at a time. Particle guns were first introduced in
[1, 2] when dealing with epidermal onion cells and rely on a very simple principle: if the incoming
particles have the appropriate size and are accelerated to the appropriate velocities, they should
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readily penetrate thin barriers such as cell walls and cell membranes, thereby entering the cell
cytoplasm. The idea is schematically illustrated in Figure 1, where typical dimensions are also shown.
One important aspect to consider in bombardment systems is the lipid bilayer structure of the cell

membrane and its underlying molecular arrangement. In general, lipid molecules are idealized as
spherical polar heads (representing a phosphoric group) having one or two elongated tails
(representing hydrocarbon, fatty acid chains). In aqueous media, as it is well known, they organize
themselves into various types of structures due to their amphiphilic property (the polar heads are
hydrophilic, the hydrocarbon chains are hydrophobic), one of which is the two-layer formation that
is observed in cellular membranes. The forces that hold these molecules together in such a config-
uration are not due to strong covalent or ionic bonds but instead arise from weaker van der Waals,
hydrophobic, and hydrogen-bonding interactions. This provides the membrane a very soft, flexible,
almost fluid-like, behavior, and yet, good response to both stretching and bending deformations,
along with excellent selective permeability, is observed. The transport of substances across the
membrane barrier by means of particle bombardment is greatly governed by the mechanical
characteristics of this structure.
In this context, the purpose of this work is to present a relatively simple, yet relatively robust,

computational framework for the simulation of particle-gun delivery systems. It can be numerically
implemented with small effort by researchers interested in the field and can be easily tailored to
many specific applications. We follow a purely mechanistic description (in the sense that biological
and chemical aspects present in the transport phenomenon are not directly addressed), keeping our
focus only on the mechanical forces that dictate the response of the problem. Both the cell
membrane and the incoming substances are treated as a collection of spherical particles forming
a discrete dynamical system, in which each particle interacts with the others and the surrounding
media via a complex combination of bonding forces, fluid pressure, drag, and contact and friction
forces due to touching and collisions. Classical Newtonian dynamics is adopted to describe the time
evolution of the system, the equations of which are solved via a numerical (time-stepping) integra-
tion scheme. Examples of numerical simulations are provided to show how the model works from a
general perspective. We remark that it is not our intention here to perform thorough assessment of
the model’s parameters and obtained results but instead just to present the general framework that
we have devised and show how it may be applied to the simulation of particle bombardment mech-
anisms. Detailed calibration of parameters and validation against results from physical experiments
are left as a matter of further research, which is currently being conducted by the authors and will be
presented in a forthcoming paper.
The proposed approach falls in the class of particle-based methods or discrete element methods,

see, for example, [3–5]. There exists a number of other theoretical and/or computational approaches
that may be used to study the transport of substances across the cell membrane, for example,
stochastic dynamics [6, 7], Monte Carlo simulations [8, 9], molecular dynamics models [10–12],
mean field models [13], and continuum mechanics models with spatial discretizations [14], to name
and cite just a few. Yet, at the tens of nano-time to a few micro-time and length scales, we believe
that particle-based models are the most suited when one is interested in the overall (collective), qual-
itative behavior of the system. They allow for a simple representation of the whole cell and incoming
substances. Also, multiple contact/impact with the opening of localized holes on themembrane surface
(localized ‘rupture’) is straightforward to characterize. They offer a good picture of the structure and

Figure 1. Particle bombardment for the delivery of substances into a cell.
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the dynamics of the membrane when hit by particles or jets of particles, without requiring detailed
descriptions of the complex short-range forces that act between polar headgroups and hydrocarbon
chains of the lipid molecules. They provide the construction of rapid, qualitative simulation tools.With
such tools, particle-gun devices can be more thoroughly designed and tested without the need of
resorting to a great number of physical experiments. Physical experiments can be expensive and time
consuming, and the parameters that can be adjusted within feasible cost and time are very limited when
compared to computational investigations.
The paper is organized as follows: in Section 2, we present a brief description of the equations

that govern the dynamics of particulate systems (with emphasis on the several types of mechanical
forces involved herein and their possible representations); in Section 3, we explain how we model
the cell membrane and the bonding forces between its lipid particles (this was performed separately
from Section 2 such that specific aspects could be more carefully addressed); in Section 4, we give
an overview of our numerical solution scheme to the system’s equations; in Section 5, we show exam-
ples of numerical simulations that were carried out by varying different geometrical parameters of a
model problem; and in Section 6, we conclude the paper with some remarks and ideas for future work.
Throughout the text, plain italic letters (a, b,…, α, β,…,A,B,…) denote scalar quantities,

whereas boldface italic ones a; b;…;α; β;…;A;B;…ð Þ denote vectors in a three-dimensional
Euclidean space. The inner product of two vectors is denoted by

u�υ ¼ u1υ1 þ u2υ2 þ u3υ3; (1)

where ui and υi (i= 1, 2, 3) are the corresponding three components of the vectors, and the norm of a
vector by

uk k ¼ ffiffiffiffiffiffiffi
u�up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ u23

q
: (2)

2. DYNAMICS OF PARTICULATE SYSTEMS

We assume at the outset that the particles are spherical and that they are small enough so that the
effect of their rotations with respect to their center of mass is unimportant to their overall motion.
Moreover, permanent deformations due to contact and collisions are supposed to be minor and
thereby ignored, which means that all particles remain spherical and with constant radius at all
times. Effects of temperature changes are also considered to be irrelevant—although these can be
easily incorporated, following, for example, the scheme proposed in [15].
Let our system be comprised of Np particles, each one with known mass mi and known radius Ri.

We denote the position vector of particle i by ri, the velocity vector by vi, and the acceleration vector
by ai. According to Newton’s second law, at every time instant t, the following equation must hold
for each particle:

miai ¼ f toti ; (3)

where f toti is the total force vector acting on the particle. This vector is made up of the sum of four
force contributions as follows:

f toti ¼ f envi þ f bondi þ f coni þ f frici ; (4)

in which f envi comprises the forces due to the environment acting on the particle (they represent the

effects of the surrounding media on the particle), f bondi comprises the forces due to bonding or adhesive
interactions with other particles, f coni comprises the forces due to mechanical contact (or collisions)
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with other particles and/or obstacles, and f frici comprises the forces due to friction that arise from these
contacts or collisions.
For the forces due to the environment, we write

f envi ¼ migþ f presi þ f dragi ; (5)

where g is the external (i.e., environmental) gravity field, and f presi and f dragi are the pressure and drag
forces due to the surrounding fluid. The pressure force is a given value or follows a given distribution,
whereas the drag force is usually dependent on the particle’s velocity (several expressions are possible
depending on the characteristics of the flow, see, for example, [16]). Here, we adopt the following sim-
ple model, which constitutes a source of damping for the system:

f dragi ¼ �cenv vi � venvð Þ ; (6)

in which cenv is a damping parameter and venv is the (local) velocity of the surrounding fluid. This is a
one-way kind of coupling between the fluid and the particle, in the sense that the fluid affects the
particle but the particle does not affect the fluid. More elaborate, fully coupled models can be
constructed if necessary (although this increases the complexity of the solution scheme, because it
introduces the fluid local velocity and pressure fields as additional variables). Other environmental
forces may be considered in Equation (5), such as electric forces due to external electric fields and
magnetic forces due to external magnetic fields. We will comment briefly on this in Section 6.
For the forces due to bonding or adhesive interactions with other particles, we write

f bondi ¼ ∑
Nb

j¼1
f bondij ; (7)

where Nb is the number of particles that are bonded to particle i and f bondij is the (binary) bonding force
that acts between particle i and particle j. This force has the general form

f bondij ¼ Kijnij; (8)

in which Kij is a scalar quantity dictating the intensity of the bonding for the pair {i, j} and nij is the unit
vector that points from the center of particle i to the center of particle j, that is,

nij ¼ rj � ri
rj � ri
�� �� (9)

(this vector will be from now on referred to as the pair’s central direction). Scalar Kij can be modeled in
a number of ways, such as by using a combination of attractive and repulsive force coefficients that are
functions of the distance between the particles [15] (this can be understood as derived from a general-
ized Mie’s potential, of which the classical Lennard–Jones potential [17] is a special case), by using
surface energy arguments [18, 19], and direct van de Waals effects. In Section 3, we present the model
that we have devised for the purpose of this work, which is based on the presence of a fictitious spring-
dashpot (SD) connecting particles i and j.
For the forces due to contact and collisions with other particles, there exist two classes of models

that may be invoked, namely, the overlap-based model and the impulse-based model. The adoption
of one or the other must be dictated by the type of contact/collision that is expected to happen
between the particles in the system. The overlap-based model is better suited when the contact
involves relatively soft particles and/or situations of enduring contact. In these cases, it is assumed
that the contact force is a function of the amount of penetration (i.e., deformation) of the particles in
contact, with the overlap between the particles considered as the magnitude of this penetration. This
means that the contact deformation has to be resolved and some constitutive equation is thereby
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necessary. The assumption of no permanent deformations due to collisions, stated at the beginning
of this section, enables us to use the Hertz’s elastic contact theory (see [20]) to this end. Accord-
ingly, based on Hertz’s solution, here we adopt the following expression for f coni :

f coni ¼ ∑
Nc

j¼1
f conij ;

f conij ¼ 4
3

ffiffiffiffiffi
R�p

E�δ3=2nij þ d δ̇ nij overlap-based modelð Þ;
(10)

where Nc is the number of particles that are in contact with particle i, f conij is the (binary) contact force
that acts between the contacting pair {i, j},

R� ¼ RiRj

Ri þ Rj
and E� ¼ EiEj

Ej 1� υ2ið Þ þ Ei 1� υ2j
� � (11)

are the effective radius and the effective elasticity modulus of the contacting pair (in which Ei, Ej and
υi, υj are the elasticity modulus and the Poisson coefficient of particles i and j, respectively),

δ ¼ ri � rj
�� ��� Ri þ Rj

� �
(12)

is the penetration (or geometric overlap) between the pair in the pair’s central direction, δ̇ is the rate of
this penetration (the superposed dot denotes differentiation with respect to time), and d is a damping
constant that is introduced to allow for some energy dissipation. Figure 2 provides an illustration of
a colliding pair.
The impulse-based model, on its turn, is better suited when the contact involves relatively stiff

spheres that do not remain in contact after the collision has come to an end. In this case, the collision
is an almost instantaneous (i.e., of very small duration) event, and a simple balance of linear
momentum before and after it suffices to compute the forces involved. Accordingly, we adopt here
the following expression for these cases:

Figure 2. Contact/collision between two particles.
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f coni ¼ ∑
Nc

j¼1
f conij ;

f conij ¼ Innij impulse-based modelð Þ;
(13)

where In is the (averaged) impulsive force exerted by the colliding pair over each other in the pair’s
central direction during the collision, obtained as shown in the APPENDIX and given by

In ¼ 1
δt
∫t
�þδt
t� In dt ¼ mi νin t� þ δtð Þ � νin t�ð Þð Þ

δt
� f in: (14)

Here, t* is the time instant at the beginning of the collision, δt is the duration of the collision,

νin t�ð Þ ¼ vi t
�ð Þ�nij and νin t� þ δtð Þ ¼ vi t

� þ δtð Þ�nij (15)

are the components of particle i’s velocity in the pair’s central direction immediately before and after
the collision, and

f in ¼
1
δt
∫t
�þδt
t� f envi þ f bondi þ∑

k≠j
f conik þ f frici

 !
�nij dt (16)

is the (averaged) resultant force that act on particle i during the collision in the pair’s central direction
as a result of all other forces that act on i except for the pair’s contact force itself. The post-collision
velocity vin(t

* + δt) is computed from the coefficient of restitution of the colliding pair (APPENDIX),
which must be known a priori. One important aspect in this model is that, when solving the system’s
dynamics by a time discretization/integration scheme, one finds that the adopted time steps Δt are
typically much larger than the collision duration. This requires one to ‘smear out’ the contact forces
over the whole time step, by multiplying them by a factor δt/Δt. Additionally, the value of δt is usually
not known and must be arbitrarily chosen for the forces to be computed. A typical choice is δt= γΔt,
with γ = 0.01 (normally, the model is insensitive to γ below 0.01, as reported in [15]).
For the forces due to friction, which arise from the contacts/collisions, we assume by construction

that the friction coefficients are small enough so that a continuous slide, with an opposing dynamic
friction force, is to be expected between the contacting pair during the entire duration of the contact/
collision (Figure 2). In other words, no stick is allowed to occur between the pair. Stick–slip and
other more elaborate friction models can be incorporated at little expense, but we find them unnec-
essary because the friction coefficients are taken here as sufficiently small. Thereby, here we write

f frici ¼ ∑
Nc

j¼1
f fricij ;

f fricij ¼ μd f conij

��� ���τij continuous slide modelð Þ;
(17)

where f fricij is the (binary) friction force that acts between particle i and particle j, μd is the coefficient of
dynamic friction for the colliding pair, and

τij ¼ vjt � vit
vjt � vit
�� �� (18)

is the tangential direction of the contact/collision, which is the direction of the tangential relative
velocity, computed as earlier with
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vit ¼ vi � vi � nij
� �

nij
vjt ¼ vj � vj � nij

� �
nij:

(19)

3. MODELING OF THE CELL MEMBRANE AND ITS LIPID BONDINGS

We consider a two-dimensional, circular-shaped idealization of the cell membrane, as depicted in
Figure 3 (a fully three-dimensional one can be considered without any modification, at the only
expense of having more particles in the system). We neglect, for simplicity, the presence of other
substances (proteins, sugars, cholesterols, etc.) rather than lipids on the membrane surface. Within
this setting, we assume that each lipid molecule is represented by a spherical particle (corresponding
to the molecule’s headgroup) that is bonded to its neighboring ones of the same layer by means of
SDs, as indicated in the upper zoom of Figure 3.
To capture the ‘through-the-thickness’ or ‘transverse’ bonding that maintains the two layers

together (which is in great part due to hydrophilic/hydrophobic interactions with the surrounding
aqueous media), we assume that there exist transversal SDs connecting the particles in the
membrane’s radial direction. And to account for circumferential interactions between the two
layers, crosswise SDs are introduced. The scheme is as depicted in the lower zoom of Figure 3,
where the dashpots are not shown for the sake of clarity. Each SD is taken with stiffness kbond,
damping constant cbond, and initial length L0. It is important to notice the role of the crosswise
SDs. They can be understood as arising from the small lateral interactions that exist between hydro-
carbon chains of adjacent lipid molecules. Their presence is crucial in providing a combined
bending behavior for the two layers. Not having them causes each layer to deform as independent
sheets upon bending, which is not what is observed in real cell membranes.
With such a scheme, on each particle i of the membrane, there act five bonding forces, corre-

sponding to the five SDs that are connected to it. This allows us to write, for each of these particles,

Figure 3. Two-dimensional representation of the cell membrane and bonding between lipid particles.
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f bondi ¼ ∑
5

j¼1
f bondij ;

f bondij ¼ kbondΔLnij � cbond νin � νjn
� �

nij;

(20)

where

ΔL ¼ ri � rj
�� ��� L0 (21)

is the elongation of the spring that connects the pair {i, j} and

νin ¼ vi � nij and νjn ¼ vj � nij (22)

are the central components of the pair’s velocities vi and vj , respectively. To allow for the bonds to
break (rupture) if the particles are pulled apart strongly enough, we provide each SD with a critical
strain εcrit that leads to a critical elongation ΔLcrit. Once this critical value is reached, the corresponding
SD is turned off, that is, it does not enter the summation in Equation (20).
One important issue in this model is how to come up with appropriate values for the springs’

stiffnesses. We suggest that they be estimated from surface tension or surface energy arguments,
because the value of the surface tension (or interfacial free energy per unit area) for
hydrocarbon–water interfaces is well documented in the literature. This is reported as being around
50mJ/m2 for monolayers (although the presence of the hydrophilic headgroup may reduce it to
something closer to 20mJ/m2, see, e.g., [19]), so that for bilayers, it must be simply multiplied
by two. The reader interested on the physics of this topic is referred to [21] and the many works that
followed, and also to the comprehensive work in [19]. Another possibility to estimate kbond is to use
direct [22] or indirect [23] experimental measures performed on specific types of membranes,
whereby membrane deformations are quantified—often involving electron microscopy visualiza-
tion—and transformed into an elasticity or stiffness constant (a vast amount of literature is also
available on this). Or to use continuum models (e.g., a shell-like kinematical description and its
finite element discretization) with which the membrane deformation could be studied under simple
load conditions and the particle adhesion forces derived by some correlation. Alternatively, as a
rough approximation, one could estimate them from the (more or less known) value of the
maximum internal pressure that the cell can undergo before membrane rupture. From static equilib-
rium arguments on one isolated particle, one can equate the force due to this internal pressure to the
sum of the components of its spring forces on the radial direction. By assuming that all springs have
the same stiffness, kbond follows.
We remark that the approach proposed in this section, that is, the use of SDs to represent bonding

forces between particles, can be used in a number of other problems whenever pair-wise adhesion is
observed. The only requirement is that the SDs be judiciously placed according to the problem at
hand so as to capture the desired bonded motion of the corresponding particles. Also, because in
the approach, each individual bonding is assumed to behave according to a one-dimensional
constitutive relation, more complex laws such as nonlinear hyperelasticity with progressive damage
and rupture (allowing for non-abrupt breaking) can be straightforwardly incorporated (in such
cases, estimation of the constitutive parameters is obviously more complicated but not impossible,
see, e.g., [24]). The approach also constitutes a very simple way to enforce fixed (predetermined)
interacting pairs, because every bonding pair has to be explicitly defined a priori.

Remark 1. The spring stiffness kbond and the dashpot constant cbond can be understood as ‘homoge-
nized’ properties that represent the overall (average) behavior of the intermolecular inter-
actions between two immediate neighboring lipid molecules. In fact, we believe that many
of the physical properties of the cell membrane can be qualitatively described without the
need to resort to detailed representations of the complex short-range forces that act
between the polar headgroups and hydrocarbon chains of its lipid molecules. In an analogy
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with gas–liquid phase interactions in thermodynamics, for example, the classical van der
Waals equation of state contains no information on the characteristics and range of
intermolecular forces and yet renders a very satisfactory representation of the phase
behavior.

Remark 2. The friction coefficient μd of Equation (17) can also be interpreted as a homogenized
property in this model. In fact, at such small scales as those observed here, one may
argue that the particles may not even come into real contact with each other. A
particle-based approach in this case should be viewed more like a coarse-grained mo-
lecular dynamics model wherein pair-wise interactions are given by contact and friction
laws instead of potential expressions. Thus, friction does not necessarily imply physical
friction, but rather a model for the tangential part of the complex short-range interac-
tions between the particles. It may be understood as a simple way of enforcing energy
dissipation in the tangential direction whenever two particles come close enough to
each other, the dissipation parameter of which being the friction coefficient.

Remark 3. It could be argued that the compressive response of the membrane on its tangential
(surface) direction should be enforced to be zero, as in the relaxed theory of perfectly
elastic solids (see Pipkin [25] for early mathematical accounts on this theory). This is
suggested by many authors when dealing with continuum mechanics models for thin
elastic membranes. In these cases, Steigmann and coworkers [26, 27] have demon-
strated that a necessary condition for the existence of energy minimizers is that the
structural members carry no load in compression. While this assumption could be readily
incorporated into our model (by enforcing kbond=0 whenever ΔL< 0 in Equation (20)),
here instead we believe that the compressive response should not be neglected. Indeed,
one could go even further and improve the model by adopting different values for the
compressive and tensile stiffnesses of the bondings. Similarly, different values for the
properties of the crosswise springs could be considered.

4. SOLUTION OF SYSTEM’S DYNAMICS VIA NUMERICAL TIME INTEGRATION

To resolve the system dynamics, let us start by considering the acceleration vector of each particle,
which may be computed from Equation (3). This vector is related to the particle’s velocity by the
time-continuous differential equation

dvi
dt

¼ ai: (23)

Integration of this equation between time instants t and t+Δt, together with Equation (3), furnishes

vi t þ Δtð Þ ¼ vi tð Þ þ 1
mi

∫tþΔt
t f toti dt: (24)

The integral in Equation (24) is difficult (if not impossible) to be evaluated analytically because
of the intricate dependence of f toti with respect to t. A numerical approximation is thus necessary,
and here, we adopt the following scheme, which corresponds to the use of a generalized trapezoidal
rule:

∫tþΔt
t f toti dt≈ ϕf toti t þ Δtð Þ þ 1� ϕð Þf toti tð Þ� 	

Δt; (25)

with 0≤ϕ≤ 1. If ϕ = 0, the integration corresponds to an (explicit) forward Euler scheme; if ϕ = 1, to
an (implicit) backward Euler one; and if ϕ = 0.5, to the (implicit) classical trapezoidal rule. By
inserting Equation (25) into Equation (24), one has
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vi t þ Δtð Þ ¼ vi tð Þ þ Δt
mi

ϕf toti t þ Δtð Þ þ 1� ϕð Þf toti tð Þ� 	
: (26)

On the other hand, the velocity vector of each particle is related to the particle’s position by the
time-continuous differential equation

dri
dt

¼ vi: (27)

This equation can also be integrated between t and t +Δt, yielding

ri t þ Δtð Þ ¼ ri tð Þ þ ∫tþΔt
t vidt: (28)

The integral on the right side of Equation (28) is also difficult to be evaluated analytically, and
then, we adopt the following approximation, similarly to what was performed in Equation (25):

∫tþΔt
t vidt≈ ϕvi t þ Δtð Þ þ 1� ϕð Þvi tð Þ½ �Δt: (29)

By introducing Equation (29) into Equation (28), one arrives at

ri t þ Δtð Þ ¼ ri tð Þ þ ϕvi t þ Δtð Þ þ 1� ϕð Þvi tð Þ½ �Δt: (30)

Expressions (26) and (30) constitute a set of equations for i= 1,…,Np particles, with which the
velocity and position vectors of each particle at t +Δt may be computed once vi tð Þ and ri tð Þ are
known. This computation, however, cannot be performed directly, because Equation (26) requires
the evaluation of f toti t þ Δtð Þ, which is in turn a function of all (!) unknown position and velocity
vectors rj t þ Δtð Þ and vj t þ Δtð Þ:

f toti t þ Δtð Þ ¼ f̂ toti r1 t þ Δtð Þ; r2 t þ Δtð Þ;…; rNp t þ Δtð Þ;�
v1 t þ Δtð Þ; v2 t þ Δtð Þ;…; vNp t þ Δtð Þ�

¼ f̂ toti rj t þ Δtð Þ; vj t þ Δtð Þ� �
; j ¼ 1; 2;…;Np

(31)

(the notation with a superposed hat as introduced earlier indicates that the quantity is a function
of the arguments inside the parentheses). This fact means that all equations are strongly coupled,
and a recursive solution is thereby necessary. We adopt here a fixed-point iterative scheme,
whose main steps are as summarized in Equation (32). The scheme is relatively easy to be
implemented, and it is noteworthy that no system matrix is required. Moreover, adaptivity of
the time step size can be straightforwardly incorporated. One can prove that such kinds of
schemes are convergent by realizing that they involve a
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GIVEN QUANTITIES : t ¼ 0; Δt ¼ known; ϕ ¼ known; ri tð Þ; vi tð Þ ¼ known;

1ð Þ INITIALIZE TIME-STEP :

K ¼ 0 iteration counterð Þ
rKi t þ Δtð Þ ¼ ri tð Þ; vKi t þ Δtð Þ ¼ vi tð Þ predictorð Þ

2ð Þ FOR i ¼ 1;…;Np DO :

f tot;Kþ1
i t þ Δtð Þ ¼ f toti rKj t þ Δtð Þ; vKj t þ Δtð Þ

� �

vKþ1
i t þ Δtð Þ ¼ vi tð Þ þ Δt

mi
ϕf tot;Kþ1

i t þ Δtð Þ þ 1� ϕð Þf toti tð Þ
h i

rKþ1
i t þ Δtð Þ ¼ ri tð Þ þ ϕvKþ1

i t þ Δtð Þ þ 1� ϕð Þvi tð Þ
� 	

Δt

8>>>>><
>>>>>:

3ð Þ CHECK FOR CONVERGENCE :

compute error rð Þ and error vð Þ
IF error rð Þ OR error vð Þ > TOLð Þ ⇒ K ¼ Kþ 1; GOTO 2ð Þ iterateð Þ
IF error rð Þ AND error vð Þ≤TOLð Þ ⇒ t ¼ t þ Δt; GOTO 1ð Þ move to next timestepð Þ

(32)

contraction mapping for all rKþ1
i t þ Δtð Þ (K being the iteration counter). Details can be found in

[15, 28].
Remark 4. According to Equation (32), velocities and positions seem to be fully updated only

after one complete iteration. This would correspond to a Jacobi-type of scheme and
is presented like so only for the sake of algebraic simplicity. What we actually do

in step (2) of the algorithm is for each particle i, we compute f tot;Kþ1
i t þ Δtð Þ using

the velocities and positions of the previous particles that have just been updated within the
current iteration, that is, using vKþ1

j t þ Δtð Þ and rKþ1
j t þ Δtð Þ , j=1, 2,…, i� 1. For j≥ i,

the values of the previous iteration, that is, vKj t þ Δtð Þ and rKj t þ Δtð Þ, are used. This
resembles a Gauss–Seidel scheme, which (as it is well known) converges at a faster
rate than the Jacobi method, if the Jacobi method converges, or diverges at a faster
rate, if the Jacobi method diverges. For details on this subject, the reader is referred
to [29].

Remark 5. The two error measures in step (3) of Equation (32) are taken as normalized
(nondimensional) measures, and are given respectively by

error rð Þ ¼ ∑Np

i¼1 rKþ1
i t þ Δtð Þ � rKi t þ Δtð Þ�� ��

∑Np

i¼1 rKþ1
i t þ Δtð Þ � ri tð Þ

�� �� and

error vð Þ ¼ ∑Np

i¼1 vKþ1
i t þ Δtð Þ � vKi t þ Δtð Þ�� ��

∑Np

i¼1 vKþ1
i t þ Δtð Þ � vi tð Þ

�� �� :

(33)

5. NUMERICAL SIMULATIONS

In this section, we provide examples of numerical simulations to show, from a general perspective,
how our computational framework can be used to study the delivery of substances into cells. We
recall that it is not our intention here to perform thorough assessment of the model’s parameters
and obtained results but instead just to illustrate how the model works and how it may be applied
to the simulation of particle bombardment systems. As previously stated, detailed calibration of
parameters and validation against results from physical experiments are left as a matter of further
research, which is currently being conducted by the authors and will be presented soon.
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As a model problem, we consider the shooting of a single cell by particle jets of different geomet-
rical characteristics and different incoming velocities. We adopt a two-dimensional idealization of
the cell identical to the one presented in Section 3, wherein the existence of other materials rather
than lipids on the membrane surface is ignored for the sake of simplicity (again, we emphasize that
fully three-dimensional models, with embedded particles representing proteins, sugars, cholesterols,
etc., can be adopted without any modification, at the only expense of having more particles in the
system). The presence of subcellular components in the cell interior is also ignored, as a first
approach to the problem. One should keep in mind that such components (especially the actin
filament networks) may offer a significant contribution to the mechanical response of the cell.
Within the present framework, these networks could be incorporated as chains of particles
connected to each other by SDs, being randomly placed in cell cytoplasm.
Two types of cells are considered, both with a perfectly circular initial shape: a ‘small cell’, for

which the diameter is taken as L = 100 nm and a ‘big cell’, for which L = 500 nm (here we mean
‘big’ only relatively, because cells—even prokaryotic cells—can be bigger than this). The jet is also
idealized in a two-dimensional setting, consisting of particles that are regularly distributed over a
rectangular area of length 100 nm and width wjet. The problem is as depicted in Figure 4.
We consider different scenarios for each type of cell by varying some of the geometric parame-

ters of the jet: (i) its width is taken either as wjet = 0.02L or wjet = 0.1L, meaning that it is either a
‘thin jet’ or a ‘thick jet’, respectively; and (ii) the diameter of its particles is taken either as ϕjet =
0.5ϕlipid or ϕjet = 2ϕlipid, meaning that it is either a ‘fine-grained’ or a ‘coarse-grained’ jet,
respectively. In all cases, the jet’s incoming velocity can take three different values: vjet = 50 nm/ns,
vjet = 100 nm/ns, and vjet = 150nm/ns. The thickness of the membrane and the diameter of the lipid heads
are assumed to be the same for both types of cells, and taken as 10nm and ϕlipid = 2.5 nm, respectively.
The particles representing the lipid heads are supposed to be soft spheres so that an overlap-based

collision scheme (Equations (10–12) is used. The damping constant d of this scheme is taken fol-
lowing the ideas of [30], which means

d ¼ 2ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffi
R�p

E�m�
q

δ1=4; (34)

wherein ξ is the damping rate of the collision, which must be specified, and m* is the effective mass of
the colliding pair, that is,

Figure 4. Model problem.
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m� ¼ mimj

mi þ mj
: (35)

The damping rate ξ enables us to enforce the type of energy dissipation that shall occur during the
collision in the pair’s central direction. If the colliding pair is seen as one-dimensional SD system
(SDS) of mass m* and damping rate ξ, its dynamics can be fully controlled by specifying appropri-
ate ξ’s. Recalling the solution to a vibration problem of a one-dimensional SDS, it follows that (i)
when ξ = 0, no damping exists and the collision is a perfectly elastic, energy-conserving one
(undamped SDS); (ii) when 0< ξ < 1, small to moderate damping exists and consequently energy
dissipation occurs at small to moderate rates (underdamped SDS); (iii) when ξ = 1, strong damping
exists and thus rapid energy dissipation is observed (critically damped SDS); and (iv) when ξ > 1,
very strong damping with rapid dissipation is observed (overdamped SDS). Equation (34) is a
generalization of the ideas proposed by Cundall and Strack [31], wherein only critically damped
collisions were considered.
The overlap-based model requires that the collisions be resolved with small time-steps, such that

both δ and δ̇ be accurately computed. Here, we use Δt = 0.0002 ns, chosen so as to ensure at least 5
time steps per collision. This value is arrived at by estimating the duration of a typical collision by
means of the Hertz’s formula for elastic collisions [20] and then dividing the result by five:

duration≅2:87
m�

R� E�ð Þ2νrel

 !1=5

⇒ Δt≤
duration

5
; (36)

where vrel is the relative velocity of the colliding pair in the pair’s central direction at the beginning of

the collision. The natural frequencies of the bond springs, given approximately by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbond=m�p

, must
also be checked against Equation (36) in order to avoid poor capturing of the springs vibrations. Such
a small time step size leads us to adopt the explicit version (ϕ = 0) of our time integration scheme
throughout (an implicit integration would be highly inefficient, because it would perform iterations
no matter how small or big Δt is).
As with respect to the cell’s surrounding medium, we assume that there exists a pressure gradient

from the interior to the exterior of the cell, which leads to an outward pressure force f presi ¼ f pi υi on
each of the membrane’s inner particles (here, f pi is the intensity of the force and υi is the local nor-
mal direction of the membrane at the inner particle i, pointing outwards). Direction υi is computed
for each inner particle by taking successive cross-products involving the particle’s position vector ri
and its immediate neighboring ones ri�1 and riþ1 of the internal layer, and then normalizing the
result. The pressure force is a live load, in the sense that it changes its direction as the membrane de-
forms due to the impact of the jet, and therefore each local direction υi has to be recomputed at every
new time step. The intensity f pi of this force, however, is kept constant for the sake of simplicity. We
assume that particles outside the cell do not experience any pressure forces (but do experience drag).
A rigid wall is placed at the opposite side of the jet to prevent the cell from undergoing large

overall rigid body motions when impacted by the jet. The contact of particles with this wall is
governed by a damping rate ξw and a (dynamic) friction coefficient μw. The complete set of data
for the problem is as follows:

• mass density of the jet particles = 1000 kg/m3 = 1� 10� 6 fg/nm3;
• mass density of the cell membrane particles = 900 kg/m3 = 9� 10� 7 fg/nm3;
• cell internal pressure force magnitude: f pi ¼ 6:5� 10�5 nN;
• drag force parameters: cenv = 0.000005 nN · ns/nm and venv ¼ o;
• spring constant for the bonding forces: kbond= 5� 10� 3 nN/nm;
• dashpot constant for the bonding forces: cbond= 0.00001 nN · ns/nm;
• critical strain for springs rupture: εcrit = 0.5;
• elasticity modulus of jet and membrane particles: Ejet =Elipid = 100 nN/nm

2;
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• Poisson coefficient of jet and membrane particles: υjet = υlipid= 0.25;
• damping rate for overlap-based collisions: ξ = 0.1;
• coefficient of dynamic friction: μd = 0.1;
• gravity is neglected (g ¼ o);
• initial distance between jet front and cell exterior = 10 nm;

Figure 5. Sequence of snapshots for the small cell bombarded by a thick, fine-grained jet with incoming
velocity of 100 nm/ns (sequence is from left to right, top to down).
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• rigid wall collision properties: ξw = 0.1 and μw = 0.1;
• time step size = 0.0002 ns; and
• final time at the end of each simulation = 15 ns.

Figure 5 depicts a sequence of snapshots for a typical simulation, corresponding to the case of the
small cell hit by a thick, fine-grained jet at the incoming velocity of vjet = 100 nm/ns (this case was
chosen arbitrarily just to provide an illustration of how the results can look like in a simulation).
Therein, one can see the progression of the membrane deformation with the impact of the jet and

Figure 6. Snapshots of deformed configurations for the small cell when hit by the different kinds of jets at
the different incoming velocities.
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also the gradual penetration of a few jet particles into the interior of the cell. At the end of the sim-
ulation, 12 jet particles (from a total of 640) were observed in the cell’s interior. This lead to a de-
livery rate (DR) (defined as the ratio of the number of jet particles inside the cell to the total number
of jet particles) of ~1.9%. Interestingly, a few particles ended trapped between the two layers of the
membrane, what could be a desired effect in some applications. Notice that the cell was able to en-
dure the impact of the jet without experiencing any damage in this case. Moreover, after the jet

Figure 7. Snapshots of deformed configurations for the big cell when hit by the different kinds of jets at the
different incoming velocities.
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energy was absorbed (and partly dissipated), the cell tended to recover its initial shape while
enclosing the delivered particles within its interior.
In Figure 6, one can see a summary of snapshots, at selected time instants, of the different

simulations carried for the small cell (the cell is hit by the different kinds of jets at the different
incoming velocities). Figure 7 shows the corresponding results for the case of the big cell. Clearly,
the proposed framework can handle multiple contact/impact with opening of localized ‘holes’ on
the membrane, through which the incoming jet particles are occasionally able to pass. This would
be very difficult to resolve using other approaches, for example, a continuum (instead of discrete)
theory and its accompanying spatial discretization. Table I shows the DRs that resulted from each
of these simulations. One can observe that coarse-grained jets either do not penetrate the cells or
penetrate but cause excessive damage to the membrane (causing the cell to break into parts).
Similarly, jets with the lower incoming velocity (50 nm/ns) display a very poor performance in the de-
livery. On the other hand, thin, fine-grained jets with the highest incoming velocity (150 nm/ns) deliver
the greatest amount of particles to the interior of the cells, and at remarkably high DRs.
It is interesting to observe that, in some of the simulations, a physical (intermolecular) interaction

is expected to occur among membrane particles that were not paired (i.e., not connected by SDs) at
the beginning of the simulation. This happens, for example, in Figure 5, t = 3.6 ns and t = 5.2 ns.
Such interaction, however, is of very little magnitude when compared to the contact/collision forces
that arise in these particles from the impact by the jet at the adopted jet velocities.

6. CLOSING REMARKS AND FUTURE WORK

The main purpose of this work was to present a simple, yet relatively robust, computational frame-
work to the simulation of the delivery of substances into cells. It is grounded on a particle-based
(discrete element) method and can be numerically implemented with small effort by researchers
interested in the field. The main advantages of such an approach are that the overall (collective)
behavior of the system can be qualitatively represented with little computational cost, and multiple
contact/impact with localized rupture is straightforward to characterize. It offers a good picture of
the structure and of the dynamics of the cell membrane when it is hit by particles or jets of particles,
without requiring detailed descriptions of the complex short-range forces that are present due to
intermolecular interactions.
We remark that our intention here was simply to show how the approach works from a general

perspective. An in-depth calibration of its parameters and validation against results from physical
experiments were left as a matter of further (ongoing) research. Moreover, it is evident that for spe-
cific applications, more specific features have to be incorporated, and more specific data need to be
considered for both geometrical and material properties. For example, one can render the presence
of electric charges relevant to a certain problem and then incorporate near-field forces of the type of
Coulombic electrostatic interactions, by adding the term

Table I. Delivery rates (DR) (%) obtained for the model problem.

Jet
velocity
(nm/ns)

Small cell Big cell

Fine grain Corse grain Fine grain Corse grain

50 Thin jet 2.5 0 0 0
Thick jet 0.3 ED 0 0

100 Thin jet 7.5* ED 0.9 0
Thick jet 1.9 ED 4.2 ED

150 Thin jet 12.5 ED 29.0 ED
Thick jet 11.9 ED ED ED

‘ED’ stands for excessive damage, meaning that the cell breaks into parts due to the impact of the jet.
*All of the delivered particles remained trapped within the two layers of the cell membrane (i.e., none reached the cell
cytoplasm).
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f nfi ¼ ∑
Np

j¼1;j≠i

qiqj

4πε ri � rj
�� ��2 nij (37)

to the particle’s total force vector (in this case, qi and qj are the electric charges of particles i and j and ε
is the permittivity). Likewise, the presence of external electric and/or magnetic fields may be consid-
ered, by taking them as environmental effects and adding the contributions qiE (E ¼electric field) and
qivi � B (B ¼magnetic field) to the particle’s environment force vector. These fields can be used to
temporarily modify the membrane’s mechanical response such that the penetration of incoming parti-
cles is facilitated.
In general, coupled multifield approaches are necessary to more realistically simulate biological

systems. For example, the deformation response of the membrane can be linked to the concentration
s of a certain ion or other chemical species. One can take this into account within our framework by
assuming kbond ¼ k̂ ΔL; sð Þ, wherein the evolution of s is described by a differential equation that must
also be resolved in the time integration scheme. Or, to allow for gradual (instead of abrupt) rupture of
the lipid bondings, a damage model can be coupled to the bonding law. This can encompass a scalar
damage variable α, 0≤ α≤ 1, such that for a totally undamaged bonding one has α=1, whereas for a
totally damaged one α=0. The evolution of α with respect to the spring elongation has to be described
by some given law (one possible simple representation is as proposed by [24] for fibrous biological
tissues). Thermal effects may also be studied once a multifield solution strategy is implemented.
One important aspect is the identification of parameters that force the system to follow certain

desired overall responses. Numerical simulations of the type that is being proposed here can be used
to devise inverse problems whereby parameters of particle guns may be obtained by minimizing an
appropriate objective function. This can be used to guide or lessen time-consuming laboratory tests.
Design-vectors for such objective functions can be consisted, for example, of the following system
variables: jet velocity, jet particles’ diameter, jet particles’ masses, jet-width-to-cell-diameter ratio,
jet and/or membrane electric charges, and so on. Because these minimization problems are gener-
ally nonconvex, their solutions have to be carried out in a two-stage approach, in which (i)
nonderivative algorithms (such as evolutionary genetic algorithms) are used to determine optimal
regions in the parameter space and (ii) classical gradient-based schemes are employed in these (lo-
cally convex) regions. Such approaches have been used in the context of particulate systems in the
works of [32–34]. Uncertainty quantification and design evaluation of input parameters may also be
conducted, for example, as recently performed by the authors in [35].
As future steps to the current work, in addition to the ongoing calibration and validation, we may

mention (i) post-processing of more detailed statistical information (definition of figures of merit
and computation of the various moments), (ii) development of more elaborate constitutive laws for
the bonding forces, (iii) incorporation of slightly disordered arrangements for the membrane particles
and/or jet particles (perhaps with random perturbations), (iv) consideration of other membrane sub-
stances and also of cell internal (cytoplasmatic) material, and (v) formulation of a coupled (multifield)
time integration scheme to account for the aforementioned chemical and possibly thermal effects, and
also to allow for a more realistic representation of the surrounding fluid (fully coupled fluid-particle
interaction). We believe that particle-based models can be a very useful approach to study the delivery
of substances across cell membranes, helping advance the design of particle-gun delivery systems.

APPENDIX

For two colliding particles i and j, a balance of linear momentum in the particles’ central direction
relating the states immediately before (time instant t*) and after (time instant t* + δt) impact renders

miνin t�ð Þ þ mjνjn t�ð Þ þ ∫t
�þδt
t� f i � nijdt þ ∫t

�þδt
t� f j � nijdt

¼ miνin t� þ δtð Þ þ mjνjn t� þ δtð Þ;
(A:1)
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in which subscript n denotes component in the direction of nij (Equation (15)) and f i and f j are, respec-
tively, the sum of all forces that act on particle i and particle j during the collision except for the pair’s
contact force itself, that is,

f i ¼ f envi þ f bondi þ ∑
k≠j

f conik þ f frici and

f j ¼ f envj þ f bondj þ ∑
k≠i

f conjk þ f fricj :
(A:2)

We can write such a balance for each isolated particle as well, what for particle i leads to

miνin t�ð Þ þ ∫t
�þδt
t� f i � nijdt þ ∫t

�þδt
t� Indt ¼ miνin t� þ δtð Þ; (A:3)

where the second integral on the left side of the equation amounts to the total impulse that particle i
receives from particle j due to impact in the pair’s central direction. The collision event can be
decomposed into a compression and a recovery phase, with corresponding durations δt1 and δt2, re-
spectively, such that δt= δt1 + δt2. In the instant of transition from one phase to the other (i.e., instant
t* + δt1), the relative velocity of the particles in the direction of nij turns to zero, meaning that the pair
attains a common velocity vcn in this direction. Accordingly, Equation (A.3) can be decomposed into
each one of these phases, yielding

miνin t�ð Þ þ ∫t
�þδt1
t� f i�nijdt þ ∫t

�þδt1
t� Indt ¼ miνcn (A:4)

for the compression phase and

miνcn þ ∫t
�þδt
t�þδt1 f i�nijdt þ ∫t

�þδt
t�þδt1 Indt ¼ miνin t� þ δtð Þ (A:5)

for the recovery phase. Similarly, for particle j, one writes

mjνjn t�ð Þ þ ∫t
�þδt1
t� f j � nijdt � ∫t

�þδt1
t� Indt ¼ mjνcn (A:6)

and

mjνcn þ ∫t
�þδt
t�þδt1 f j � nijdt � ∫t

�þδt
t�þδt1Indt ¼ mjνjn t� þ δtð Þ: (A:7)

Equations (A.4) and (A.5), or equivalently, Equations (A.6) and (A.7), provide a means to compute
the impulses that each particle receives from the other in the compression and recovery phases in the
pair’s central direction. The ratio between these impulses is the coefficient of restitution e of the col-
liding pair, which is a specified (given) quantity:

e ¼ ∫t
�þδt
t�þδt1Indt

∫t
�þδt1
t� Indt

: (A:8)

By inserting Equations (A.4) and (A.5) (or equivalently, Equations (A.6) and (A.7)) into Equation
(A.8), one arrives at
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e ¼ mi νin t� þ δtð Þ � νcnð Þ � Irecf i

mi νcn � νin t�ð Þð Þ � Icompf i

¼
�mj νjn t� þ δtð Þ � νcv

� �þ Irecf j

�mj νcn � νjn t�ð Þ� �þ Icompf j

; (A:9)

where

Irecf i ¼ ∫t
�þδt
t�þδt1 f i � nijdt; Icomp

f i
¼ ∫t

�þδt1
t� f i � nijdt;

Irecf j ¼ ∫t
�þδt
t�þδt1f j � nijdt and Icomp

f j
¼ ∫t

�þδt1
t� f j � nijdt

(A:10)

are the impulses due to f i and f j in the pair’s central direction during the recovery and compressive
phases. Because vcn is present on both forms of Equation (A.9), it can be eliminated, leading to

e ¼ νjn t� þ δtð Þ � νin t� þ δtð Þ þ Δrec
ij

νin t�ð Þ � νjn t�ð Þ þ Δcomp
ij

; (A:11)

in which

Δrec
ij ¼ 1

mi
Irecf i � 1

mj
Irecf j and Δcomp

ij ¼ 1
mi

Icompf i
� 1
mj

Icompf j
: (A:12)

Equation (A.11) furnishes an expression for vjn(t
* + δt), which can in turn be inserted into the pair’s

equation (A.1). By doing so, and considering the definition of the (averaged) resultant force that acts
on particle i during the collision given by Equation (16), and the equivalent definition for the (aver-
aged) resultant force that acts on particle j, the following result is attained:

νin t� þ δtð Þ ¼ miνin t�ð Þ þ mj νjn t�ð Þ � e νin t�ð Þ � νjn t�ð Þ� �� �
mi þ mj

þ
f in þ f jn
� �

δt � mj eΔcomp
ij � Δrec

ij

� �
mi þ mj

:

(A:13)

Once vin(t
* + δt) is known, one can subsequently obtain vjn(t

* + δt) via Equation (A.11). Finally,
having the post-collision velocities, the total impulse that particle i receives from particle j due to im-
pact in the pair’s central direction can be computed with the aid of Equation (A.3) (or its equivalent
counterpart for particle j), yielding

∫t
�þδt
t� Indt ¼ mi νin t� þ δtð Þ � νin t�ð Þð Þ � ∫t

�þδt
t� f i � nijdt; (A:14)

which leads to the (averaged) impulsive force given by Equation (14).
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