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MOTIVATION: LARGE-SCALE ADDITIVE MANUFACTURING AND FINE-SCALE 3D PRINTING ($ 5.9 BILLION IN 2017)

DEPOSITION

P

PHASES

MULTIPLE

ROBOTIC 

CONTROLLER

LASER

SUBSTRATE

1 INDUSTRIAL GOAL: RAPID SIMULTANEOUS CONTROL OF DEPOSITION, LASERS/HEAT AND MATERIALS

2 3DP COMBINES: POSITIONING ↔ DEPOSITION↔ HEATING ↔ FUNCTIONALIZED MATERIALS

3 MULTISTAGE PROCESSES: NEXT-GENERATION MACHINES NEED COMPUTATIONAL GUIDANCE!

4 NEXT-GEN MACHINE (DMG MORI): https://www.youtube.com/watch?v=g8sT8ESfjrg

5 RESEARCH COLLABORATORS: AHPCRC, APPLE, ARAMCO, ARL, AUTODESK, BASF, BOEING, DOE, FAA,
LAWRENCE BERKELEY, LAWRENCE LIVERMORE, LOCKHEED-MARTIN, DMG-MORI, PEER, POWLEY
FOUNDATION, SAMSUNG, SANDIA, SIEMENS, TOYOTA
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DRIVER: LARGE-SCALE ADDITIVE MANUFACTURING AND FINE-SCALE 3D PRINTING WITH SPECIALIZED MATERIALS

MICRO−ELECTRONIC DEVICE

VARIOUS LEVELS
OF DOPANTS

DESIRED PROPERTIES: (1) ELASTIC (2) THERMAL (3) ELECTRICAL (4) MAGNETIC (5) OPTICAL ETC.

KEY MOTIVATION: STRATEGIC/RARE MATERIAL REPLACEMENT WITH MICRO-DESIGNED MIXTURES

KEY INGREDIENT: SPECIALIZED PROPERTY DESIGN-BY USE OF FINE-SCALE PARTICLES

ULTIMATE OBJECTIVE: REDUCE PRODUCT DEVELOPMENT TIME AND COSTS THROUGH SIMULATION
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DETAILED MODELING/SIMULATION: DEPOSITION(DEM)⇒ LASER(COMP-OPTICS)⇒ CONTINUUM(DIGITAL/VOXEL)

KEY COMPONENTS:

PART 1: DETAILED MODELING OF DYNAMIC DEPOSITION OF COMPLEX MIXTURES (DEM)

PART 2: DETAILED MODELING OF LASER PROCESSING OF DEPOSITION (COMPUTIONAL OPTICS)

PART 3: DETAILED MODELING OF CONTINUUM BEHAVIOR (DIGITAL/VOXEL-IMAGE COMPUTATION)

PART 4: MACHINE-LEARNING EXTENSIONS (ARTIFICIAL NEURAL NETWORKS)

INDUSTRIAL GOAL: RAPID SIMULTANEOUS CONTROL OF DEPOSITION, LASERS AND MATERIALS
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PART 1: PLACEMENT OF PARTICLES: MANY APPROACHES TO GET THE PARTICLES INTO THE CORRECT LOCATION

TARGETED

ELECTRIFICATION

SMEARED

WITH BLADE

POURING

SPRAY

REGARDLESS OF POST-PROCESSING: CRITICAL FIRST STEP IS TO PLACE PARTICLES ACCURATELY

METHOD 1: DOCTOR BLADE TO SMEAR PARTICLES-THEN HEAT/LASER (COMMON)

METHOD 2: POUR FLUIDIZED/INK PARTICLES-THEN HEAT/LASER (COMMON)

METHOD 3: SPRAY AEROSOLIZED/ATOMIZED PARTICLES-THEN HEAT/LASER (COMMON)

METHOD 4: ELECTRICALLY GUIDE PARTICLES (MIXTURES)-THEN HEAT/LASER ACCURATE=FUTURE

PROVIDES EXTREME FAULT-TOLERANCE (ROBOTIC ERROR COMPENSATION)

ELECTRIFICATION AND CHARGING PRODUCES CONTROLLABLE FLUID-LIKE BEHAVIOR

SECONDARY (BLUE) PARTICLES FUNCTIONALIZED THE MIXTURE FOR DESIRED PROPERTIES
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COMPARISON: WITH AND WITHOUT TARGETED ELECTRIFICATION

1 INDUSTRIAL GOAL: RAPID SIMULTANEOUS CONTROL OF DEPOSITION, LASERS/HEAT AND MATERIALS

2 3DP COMBINES: POSITIONING ↔ DEPOSITION↔ HEATING ↔ FUNCTIONALIZED MATERIALS

3 MULTISTAGE PROCESSES: NEXT-GENERATION MACHINES NEED COMPUTATIONAL GUIDANCE!

4 CRITICAL FIRST STEP IS TO PLACE PARTICLES ACCURATELY-THEN THERMALLY PROCESS
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EXAMPLE: DETAILED DEM MODELING OF MULTIPHASE IONIZED MIXTURE DEPOSITION WITH ELECTRIC FIELD

ELECTROMAGNETIC

DISPENSER

NOZZLE

DEPOSITION
FIELD

SUBSTRATE SUBSTRATE SUBSTRATE

REPEATED, ACCURATE, CONSISTENT DEPOSITION IS POSSIBLE-LIKE ELECTROSTATIC COPIERS!

DESPITE PLATEAU-RAYLEIGH-LIKE INSTABILITY

CHARGE-INDUCED PSEUDO-SURFACE TENSION LEADS TO SURFACE-AREA MINIMIZATION
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ZOOM: MODELING OF MULTIPHASE IONIZED MIXTURE DEPOSITION WITH ELECTRIC FIELD

CONSISTENT TARGETED DEPOSITION IS ACHIEVABLE-ELECTRICALLY (AND ELECTROMAGNETICALLY)!
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PART 2: MODELING FOR LASER-BASED FINISHING-SEVERAL SCENARIOS

Features are added by sintering, melting, vaporizing the materials.
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LASER-BASED POST PROCESSING/FINISHING-MANY POSSIBILITIES
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PART 3: CONTINUUM ANALYSIS OF DEPOSITED MATERIAL: DIGITAL/VOXEL-IMAGE VOXEL-BASED COMPUTATION

PARTICLE MIXTURE

EMBEDDING MESH DIGITAL-IMAGE

LINEAR MOMENTUM: ∇x · T + f = ρ d2u
dt2 AND ∂

∂X ≈
∂
∂x AND

d()
dt
≈ ∂()

∂t
|X

CONSTITUTIVE LAW:T = ΛIE0 : (ε− εθ − εp) WHERE MODULI κ = κoe
a3
θ−θr
θr , µ = µoe

a4
θ−θr
θr , ETC.

PLASTICITY: ||T ′|| > Ty ⇒ ζ̇ = a

(
||T ′||

Ty
− 1

)
AND ||T ′|| ≤ Ty ⇒ ζ̇ = 0 (Ty = Tyoe

a1
θ−θr
θr )

DAMAGE: ||T ′|| > Td ⇒ Λ̇ = b

(
||T ′||
Td

− 1

)
AND ||T ′|| ≤ Td ⇒ Λ̇ = 0 (Td = Tdoe

a2
θ−θr
θr )

ENERGY: ρow = W ≈ 1
2

(ε− εθ − εp) : IE : (ε− εθ − εp) + ρoCθ

FIRST LAW: ρoC θ̇ = T : (ε̇θ + ε̇p)− 1
2

(ε− εθ − εp) : İE : (ε− εθ − εp) +∇X · (IK · ∇X θ) + ρoz
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DIGITAL/VOXEL CONVERGENCE: 41× 41× 41(206763DOF )⇒ 61× 61× 61(680943DOF )⇒ 81× 81× 81(1594323DOF )

DIGITAL/VOXEL-BASED COMPUTATION CAN BE INTERPRETED AS A VARIANT OF:

FDTD-FINITE DIFFERENCE TIME DOMAIN METHOD:

https://en.wikipedia.org/wiki/Finite-difference_time-domain_method

IBM-IMMERSED BOUNDARY METHOD: https://en.wikipedia.org/wiki/Immersed_boundary_method
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DIGITAL/VOXEL CONVERGENCE: 41× 41× 41(206763DOF )⇒ 61× 61× 61(680943DOF )⇒ 81× 81× 81(1594323DOF )

PDE-SOLUTION CONVERGENCE CLOSELY CORRELATES TO DIGITAL/VOXEL CONVERGENCE
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RESIDUAL STRESS EVOLUTION DURING COOLING: DIGITAL/VOXEL-BASED COMPUTATION

EMBEDDING MESH DIGITAL-IMAGE

LINEAR MOMENTUM: ∇ · T + f = ρo
∂2u
∂t2

FIRST LAW: ρoC θ̇ = T : (ε̇θ + ε̇p)− 1
2

(ε− εθ − εp) : İE : (ε− εθ − εp) +∇ · (IK · ∇θ) + ρoz
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PART 4-MACHINE LEARNING EXTENSIONS: SYSTEM-WIDE ULTRAFAST SEARCH-ARTIFICIAL NEURAL NETS (ANN)

x
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ext
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NEURONS
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(WEIGHTORS)

INPUTS

e
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(AGGREGATORS)

FUNDAMENTAL: OUTPUT = B(INPUT ,W1,W2, ...WN ) WHERE B IS “MIMICED” WITH AN ANN

SYNAPSES: MULTIPLY INPUT BY A WEIGHT WHICH REPRESENTS INPUT’S RELEVANCE TO OUTPUT

NEURONS: ADD OUTPUTS FROM ALL OF THE SYNAPSES AND APPLY AN “ACTIVATION” FUNCTION

TRAINING: RECALIBRATE WEIGHTS FOR DESIRED OUTPUT ⇒ OUTPUT = B(INPUT ,W1,W2, ...WN )

ULTIMATELY, ONE CONSTRUCTS A SYSTEM WITH OPTIMIZED WEIGHTS TO MIMIC A “BRAIN” (B)
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SUMMARY: ADVANCED MANUFACTURING AND 3D PRINTING OF NEW MULTI-FUNCTIONALIZED MATERIALS

MODELING AND SIMULATION INGREDIENTS:

STAGE 1: DYNAMIC DEPOSITION PROCESSING SIMULATION: DISCRETE ELEMENT METHODS

STAGE 2: RAPID LASER PROCESSING SIMULATION: COMPUTATIONAL OPTICS

STAGE 3: CONTINUUM ANALYSIS OF DEPOSITED MATERIAL: DIGITAL/VOXEL-IMAGE COMPUTATION

STAGE 4: MACHINE-LEARNING “WRAPPER”: DEEP-LEARNING AND ARTIFICIAL NEURAL NETWORKS

RESEARCH COLLABORATORS: AHPCRC, APPLE, ARAMCO, ARL, AUTODESK, BASF, BOEING, DOE, FAA,
LAWRENCE BERKELEY, LAWRENCE LIVERMORE, LOCKHEED-MARTIN, DMG-MORI, PEER, POWLEY
FOUNDATION, SAMSUNG, SANDIA, SIEMENS, TOYOTA
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DETAILS IN BOOKS/MONOGRAPHS/PAPERS: http://www.me.berkeley.edu/faculty/zohdi/

Zohdi, T. I. and Wriggers, P. (Book, 2008) Introduction to computational
micromechanics. Second Reprinting. Springer-Verlag.

Zohdi, T. I. (Book, 2012) Electromagnetic properties of multiphase
dielectrics. A primer on modeling, theory and computation. Springer-Verlag.

Zohdi, T. I. (Book, 2017). Modeling and simulation of functionalized
materials for additive manufacturing and 3D printing: continuous and
discrete media. Springer-Verlag.

POSTED PAPERS: http://www.me.berkeley.edu/faculty/zohdi/

T. I. Zohdi (2036169) (U. C. Berkeley) COMPUTATIONAL MANUFACTURING AND MATERIALS LABORATORY GROUP RESEARCH THEMESFebruary 4, 2019 17 / 53

http://www.me.berkeley.edu/faculty/zohdi/
http://www.me.berkeley.edu/faculty/zohdi/


PRESENTED WORK IS A SUBSET OF A FAMILY OF COUPLED DISCONTINUOUS-CONTINUOUS SYSTEMS

EM-COMPOSITES CHARGED SPRAYS OPTICS

CELL GROUPS
SWARMS(BBC

PHOTO)
EM-FABRIC
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MODELING AND SIMULATION OF FIRES

LEFT: NASA’S EARTH OBSERVATORY (LANDSAT/MODIS/J. STEVENS)

RIGHT: NASA’S TERRA SATELLITE
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FREQUENT FIRE INITIATOR-MANUFACTURING: SPATIO-TEMPORAL FOOTPRINTS OF INCANDESCENT EJECTA

DYNAMICS: mi
dv i
dt

= mig + 1
2
ρaCD ||v s − v i ||(v s − v i )Ai

THERMO: miCi
dθi
dt

= hAs
i (θs − θi ) + εβAs

i (θ
4
s − θ4

i ) + γ 1
2
ρaCD ||v s − v i ||3Ai
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MANUFACTURING SAFETY: SPATIO-TEMPORAL FOOTPRINTS OF INCANDESCENT EJECTA
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EXTENSIONS TO MULTIPLE ZONES-PROPAGATION OF EMBERS” “SPOTTING”

SECTORS OF VARYING 

EMBERS

SOOT

AND

VELOCITY PROFILE

FIREBREAK

COMBUSTIBLE MATERIAL
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FIRE-MODEL MACHINE LEARNING: EVOLUTIONARY/GENETIC ALGORITHMS-USING OBSERVED DATA

INFORMATION

[ OBSERVATIONS
IN−FIELD ]

ERROR DRIVES

MODEL ADJUSTMENT

COMPUTER MODEL
(with adjustable  parameters)

SIMULATION
RESULTS ]−[

DATA FROM 
DEPLOYED
SYSTEMS

parameters readjusted

OBSERVATIONS FROM: 

(a) FIRE−FIGHTERS
(b) UAVS
(c) SATELLITES
(d) CITIZENS, ETC...

REDEPLOYED
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FIRE-MODEL MACHINE LEARNING: RAPID COMPARISON OF FIRE SIMULATION “POPULATIONS” TO FIND THE BEST!

DIFFERENT PARAMETER SET

POPULATION OF  FIRE SCENARIOS HUNDREDS OF THOUSANDS

EACH SCENARIO HAS A 

THE ALGORITHM RAPIDLY HUNTS DOWN THE BEST MODEL “ON THE FLY”

THE KEY: EACH SCENARIO-SIMULATION TAKES A FRACTION OF A SECOND

CAN RAPIDLY TEST THOUSANDS OF SCENARIOS/PARAMETER SETS QUICKLY!
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MAPPING STRATEGIES-RAPID DAMAGE POST-DISASTER ASSESSMENT: POWER, WATER, TELECOMMUNICATIONS...

REGIONAL INTERNET CELLS

REGIONAL POWER CELLS REGIONAL FOOD PRODUCTION CELLS REGIONAL WATER CELLS

REGIONAL SATELLITE CELLS REGIONAL TRAFFIC CELLS
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THE RISE OF QUADCOPTERS AND MAPPING STRATEGIES

EASE OF USE OF DRONES HAS LED TO DEVELOPMENT OF MULTIDRONE STRATEGIES FOR MAPPING
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MODELING SWARMS: LARGE-SCALE BIOMIMICRY
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SWARM

OBSTACLES

GOAL

ΨM−T

Ψ
M−T

Ψ
M−M

M−O

M−O
Ψ

Ψ

GOAL

OBSTACLE

MEMBERS
SWARM

MODEL: mi r̈ i = ΨM−M︸ ︷︷ ︸
member−member

+ ΨM−T︸ ︷︷ ︸
member−target

+ ΨM−O︸ ︷︷ ︸
member−obstacles

GOAL: USE ANIMAL BEHAVIOR TO CREATE SYNTHETIC SWARMS
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SWARM MODELING: TYPES OF INTERACTION

ΨM−T

Ψ
M−T

Ψ
M−M

M−O

M−O
Ψ

Ψ

GOAL

OBSTACLE

MEMBERS
SWARM TARGET

LOCATION

OBSTACLE 
LOCATIONS

INITIAL SWARM

X Y

Z

DYNAMICS : mi r̈ i = Ψ(r 1, r 2, ..., r i , ..., r n) = ΨM−M
i + ΨM−T

i + ΨM−O
i

MEMBER : ΨM−M
i =

∑n
k 6=i


αM−M

1 ||r i − r k ||β
M−M
1︸ ︷︷ ︸

attraction

−αM−M
2 ||r i − r k ||−β

M−M
2︸ ︷︷ ︸

repulsion

 r k−r i
||r k−r i ||


TARGET : ΨM−T

i =
(
αM−T ||r∗ − r i ||β

M−T
)

r∗−r i
||r∗−r i ||

OBSTACLE : ΨM−O
i = −

∑q
j=1

((
αM−O ||r oj − r i ||−β

M−O
) r oj−r i

||r oj−r i ||

)
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NONSMOOTH, NONCONVEX, OBJECTIVES⇒ MACHINE LEARNING/GENETIC ALGORITHMS

Λ

Π

PARENT

(NEED INHERITANCE)

CHILD

Λ Λ Λ Λ Λ Λ Λ Λ1 2 3 4 5 6 7 8
ETC ...

GENE POOL 
OF PARAMETER SETS

TWO GENERATED "CHILDREN"

RANDOM CONVEX COMBINATIONS

TWO  RANKED  "PARENTS" 

1 USE CASES: Well-suited for nonconvex, nonsmooth, multicomponent, multistage systems

2 POPULATION: Generate system population: Λi def
= {Λi

1, Λi
2, Λi

3, ..., Λi
N}

def
= {αi , βi ...}

3 PERFORMANCE: Compute fitness/performance of each genetic string: Π(Λi ) and rank them (i = 1, ...)

4 MATING: Mate pairs/produce offspring: λi def
= Φ(I )Λi + (1− Φ(I ))Λi+1 where 0 ≤ Φ ≤ 1

5 ELIMINATION: Eliminate poorly performing genetic strings, keep top parents, top offspring

6 NEXT GENERATION: Repeat the process with the new gene pool and new random genetic strings

7 POST-PROCESSING: Employ gradient-based methods afterwards in the local “valleys”-if smooth enough
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MODEL PROBLEM FOR MAPPING

SWARM MEMBERS
LOCATIONS

TO BE MAPPED
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MORE SOPHISTICATED CONTROL: SWARM SELF-ORGANIZATION-SEARCHING MULTIPLE SITES

EXAMPLE-DESIGN VARIABLES: INTERACTION PARAMETERS=αi , βi , i = 1, ...,N

STARLINGS (STURNUS VULGARIS): INTERACT WITH SPECIFIC MEMBERS

ANOTHER CASE: INTERACTION WITH EVERY OTHER SWARM MEMBER

ANOTHER CASE: INTERACTION WITHIN A COMMUNICATION RADIUS

ANOTHER CASE: INTERACTION WITHIN A VISUAL FIELD

THE KEY IS TO TRANSLATE BEHAVIOR INTO EQUATIONS
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MODEL PROBLEM: CHASING A MOVING TARGET

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

Tx = xo + a1cos(a2t) + a3t, Ty = yo + b1sin(b2t) + b3t, Tz = zo + c1cos(c2t) + c3t
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AGENT-BASED COMPUTATION: POPULATION DYNAMICS

POPULATION #1

POPULATION #2

GLOBE

SURFACE

PATCH

         BIJECTIVE)

DISCRETE
FUNDAMENTALLY

HOMOGENIZE

INFORMATION IS LOST

NUMERICALLY
DISCRETIZE

(PROCESS IS NOT

OUTCOME

IN CONFLICT

GROWING

GROWING

GROWING

AND GROWTH

POPULATIONS IN CONFLICT POSSIBLE

BASIC GROWTH: P(t + ∆t) = λP(t)→ P(t + ∆t)−P(t) = (λ− 1)P(t)→ P(t) = P(0)e(λ−1)t = P(0)e(b−d)t

PARAMETERS: λ = 1 + b − d WHERE BIRTHRATE=b DEATH RATE=d

COUPLED: Ṗ1 = rP2 − τP1 AND Ṗ2 = aP1 − γP2

OUTCOMES: Ṗ1 = rP2 − τP1 > 0 AND Ṗ2 = aP1 − γP2 > 0

LIKELY SCENARIO: (1) MASS FATALITIES (2) ENCLAVES (3) BOUNDARY EVOLUTION

CHARACTERISTICS: (1) REPORODUCTIVE RATES (2) LIFESPANS (3) COMBAT SKILLS (4) MOBILITY
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AGENT-BASED COMPUTATION: POPULATION DYNAMICS

"

" "

"
SUPPORT GROUP

FOR 

SUPPORT GROUP

FOR 

CONFLICTING PAIR

CONFLICT RADIUS: ||r (1)
i − r (2)

j || ≤ d
(1−2)
ij

SUPPORT-1: ||r (1)
i − r (1)

j || ≤ s
(1−1)
ij AND SUPPORT-2: ||r (2)

i − r (2)
j || ≤ s

(2−2)
ij

PROPORTIONS: φ1 =
p1

p1+p2
AND φ2 =

p2
p1+p2

STEP 1: SET POPULATION PARAMETERS

STEP 2: GENERATE INITIAL LOCATIONS

STEP 3: CHECK FOR CONFLICTS

STEP 4: COMPUTE SURVIVORS

STEP 5: COMPUTE BIRTHS AND DEATHS

STEP 6: UPDATE AGES

STEP 7: REPEAT STEPS 2-6
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AGENT-BASED COMPUTATION: POPULATION DYNAMICS-GLOBALLY-DISPERSED
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AGENT-BASED COMPUTATION: POPULATION DYNAMICS-INITIALLY ISOLATED
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MODELING DISEASED RED BLOOD CELL (RBC) DETECTION
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NORMAL FLUX
OUTWARD 

X-4E-05
-2E-05

0
2E
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-2E-05

0
2E-05
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0
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4E-05

MAG

2.5
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2.08333
2
1.91667
1.83333
1.75
1.66667
1.58333
1.5
1.41667
1.33333
1.25
1.16667
1.08333
1

GOAL: RAPID NON-INVASIVE TESTING

COLLABORATOR: F. KUYPERS (OAKLAND CHILDREN’S HOSPITAL)
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DISEASED RED BLOOD CELL GALLERY

HEALTHY

acanthocyte

liver problems stomatocyte

alcoholism

spherocyte

water−dilution elliptocyte

iron deficiency

dacrocyte

thalassemia

codocyte

iron deficiency

echinocyte

bleeding ulcers thalassemia

sickle−celldrepanocyte

shistocyte
renal−graft 

rejection

bilipid layer

growing polymer

celldiseased 

SHAPE-RELATED R-B CELL DISORDERS/IMPAIRED FUNCTION

EXCESSIVE RED CELL DESTRUCTION OCCURS

CELLS REMOVED PREMATURELY BY THE SPLEEN ⇒ ANEMIA
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A SPECIFIC DISEASE: SICKLE CELL ANEMIA

X
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2.18421
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2.02632
1.94737
1.86842
1.78947
1.71053
1.63158
1.55263
1.47368
1.39474
1.31579
1.23684
1.15789
1.07895
1

RED BLOOD CELLS TRANSPORT OXYGEN AND CARBON DIOXIDE

SICKLE-CELL ANEMIA IS PREVALENT IN 0.03− 0.05% OF POPULATION

HIGHER IN AFRICAN, MEDITERRANEAN AND ASIAN ANCESTRY POP.

GOAL: RAPID NON-INVASIVE TEST TO DETERMINE DISEASED CELLS
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HIGH-FREQUENCY OPTICAL APPROACHES FOR LIGHT PROPAGATION

I
N
C
O
M
I
N
G

B
E
A
M

X

Z Y

CROSS−SECTION RBC

Θ

Θt

i

Θr

INCIDENT RAY

TANGENT

REFLECTED RAY
NORMAL

TRANSMITTED
RAY

1 COMPUTE RAY REFLECTIONS (FRESNEL RELATIONS)

2 COMPUTE ABSORPTION BY CELLS

3 INCREMENT RAY POSITIONS FORWARD
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EXPERIMENTAL RESULTS FOR ENERGY PERCENTAGE

CELLS ENERGY: # 1 ENERGY: # 2 ENERGY: # 3 ENERGY: # 4
1650 0.97390 0.96450 0.96700 0.96760
4090 0.88700 0.85700 0.88230 0.87580
6510 0.85700 0.86390 0.83370 0.86710
8100 0.75300 0.70050 0.77650 0.70900
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COMPUTATIONAL RESULTS: COMPARISON TO EXPERIMENTS
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COMPUTATIONS: Ix(T)/||I(0)||
EXPER. TRIAL #1: 420 nm Ix(T)/||I(0)||
EXPER. TRIAL #2: 420 nm Ix(T)/||I(0)||
EXPER. TRIAL #3: 420 nm Ix(T)/||I(0)||
EXPER. TRIAL #4: 420 nm Ix(T)/||I(0)||
EXPER. TRIAL #1: 710 nm Ix(T)/||I(0)||
EXPER. TRIAL #2: 710 nm Ix(T)/||I(0)||
EXPER. TRIAL #3: 710 nm Ix(T)/||I(0)||
EXPER. TRIAL #4: 710 nm Ix(T)/||I(0)||

CELLS ENERGY
1000 0.97501
2000 0.92201
4000 0.87046
8000 0.76656
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MODELING BALLISTIC FABRIC SHIELDING
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z

Applications: ballistic fabric such as KEVLAR, ZYLON and biological tissue
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EXPERIMENTAL FACILITIES AT UC BERKELEY

Pneumatic (nitrogen) gun, breech and barrel set up. ZYLON samples.
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REDUCED-ORDER NETWORK-NODE MODELS

FIBROUS
MICROSTRUCTURE

INDIVIDUAL
NODE

MACROSCALE

Ψ
Ψ

Ψ
Ψ

4

1
2

3

The yarn remain straight, undergoing a homogeneous stress state

The forces only act along the length of the yarn

The joint connections produce no bending or moments

The yarn do not buckle

The yarn do not slide relative to one another (“combing”)
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CONSTITUTIVE LAW: YARN CONTAINING HUNDREDS OF RANDOM FIBRILS
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 NOMINAL STRETCH L/Lo

NO MISALIGNMENT

SECOND PIOLA-KIRCHHOFF STRESS: S = F(U = L
Lo

) = αIE yE

GREEN-LAGRANGE STRAIN: E = 1
2
(U2 − 1)

FORCE: Ψ = USAo = L
Lo
SAo

DAMAGE: α(t) = min
(

1, α(0 ≤ t∗ < t), (exp(−λ(U(t)−Ucrit ))−exp(−0.03λ))
(1−exp(−0.03λ))

)
DAMAGE PARAMETER RESTRICTION: 0 ≤ α(t) ≤ 1
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IMPACT/CONTACT WITH OTHER OBJECTS

INTERPENETRATION

CLOSEST
SURFACE

POINT
FABRIC

RIGID BODY

Move the fabric node to the closest point on the projectile’s surface (there
are a variety of algorithms to perform this operation).

Compute contact forces from the interpenetrated (predictor) position and the
corrected position (the difference is denoted the “gap”).

If there is friction, then a stick condition is assumed, then the friction force is
checked against the static limit which, if violated, enacts a sliding friction
force.
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NODAL SYSTEM DYNAMICS DRIVE THE YARN VIA A FORCE BALANCE

1

2

4

3

Ψ

Ψ

Ψ

Ψ

NODAL DYNAMICS: mi v̇ i = Ψtot
i =INTRA-YARN+EXTERNAL FORCES

COUPLED SYSTEM: v i (t + ∆t) = v i (t) + ∆t
mi

(
φΨtot

i (t + ∆t) + (1− φ)Ψtot
i (t)

)
⇒ r i (t + ∆t) = r i (t) + v i (t + φ∆t)∆t = r i (t) + (φv i (t + ∆t) + (1− φ)v i (t)) ∆t

SOLVED ITERATIVELY (IMPLICITLY) WITH TIME-STEP ADAPTATION
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AN IMPACT SEQUENCE FOR A SHEET-CONTACTOR PAIR

COMPUTE
DISPLACEMENTS/CONTACT

COMPUTE YARN STRETCH

COMPUTE FIBRIL RUPTURE

COMPUTE CONTACTOR POSITION

IF TOL MET, INCREMENT TIME

IF TOL NOT MET, REDUCE TIME STEP
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EXTERNAL ELECTROMAGNETICALLY-INDUCED HELICAL MOTION

X1

NO ELECTROMAGNETIC

FIELD PRESENT
X2 ELECTROMAGNETIC

FIELD PRESENT

vo

mv̇ = q(E + v × B)

COMPONENT FORM:

v̇1 = q
m

(E1 + (v2B3 − v3B2))

v̇2 = q
m

(E2 − (v1B3 − v3B1))

v̇3 = q
m

(E3 + (v1B2 − v2B1))

CHOOSE THE COMPONENTS OF B FOR THE DESIRED EFFECT

INDUCES HELICAL MOTION ⇒ HARNESSED FOR TUMBLING

MAGNETIC EFFECTS⇒ TURNING RADIUS = R =
m||v||
|q|||B||

?KEY EFFECT: ROTATION TIME= Rθ
||v|| = mθ

|q|||B||=VELOCITY-INDEPENDENT
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ELECTROMAGNETIC PARTICLE-FUNCTIONALIZED FABRIC SHIELDS
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SENSITIVE PARTICLES
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ELECTROMAGNETIC FABRIC SHIELDS: HARNESSING LORENTZ FORCES

FABRIC

DOWNWARD

FIELD
ELECTROMAGNETIC 

FIELD

NO ELECTROMAGNETIC 

)(NET FORCE

INDUCED UNSYMMETRIC 
FORCES

MASSES
LUMPED

CHARGED

BODY
RIGID

PROJECTILE PUSHES CHARGED FABRIC INTO MAGNETIC FIELD

THIS INDUCING ROTATION VIA THE CONTACT FORCES

FABRIC DYNAMICS: mr̈ i = Ψtot
i︸︷︷︸

total

= Ψnn
i︸︷︷︸

yarn

+ Ψcon
i︸︷︷︸

contact

+ Ψfric
i︸︷︷︸

friction

+ qi (E i + v i × B i )︸ ︷︷ ︸
electromagnetic forces
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COMPARISON: REGULAR AND “ELECTROMAGNETIC” FABRIC SHIELDS

PATENT: T. I. Zohdi. US Application No. 61/313,058

T. I. Zohdi (2036169) (U. C. Berkeley) COMPUTATIONAL MANUFACTURING AND MATERIALS LABORATORY GROUP RESEARCH THEMESFebruary 4, 2019 53 / 53


