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Abstract
The increase in readily available computational power raises the possibility that direct agent-based modeling can play a key
role in the analysis of epidemiological population dynamics. Specifically, the objective of this work is to develop a robust
agent-based computational framework to investigate the emergent structure of Susceptible-Infected-Removed/Recovered
(SIR)-type populations and variants thereof, on a global planetary scale. To accomplish this objective, we develop a planet-
wide model based on interaction between discrete entities (agents), where each agent on the surface of the planet is initially
uninfected. Infections are then seeded on the planet in localized regions. Contracting an infection depends on the charac-
teristics of each agent—i.e. their susceptibility and contact with the seeded, infected agents. Agent mobility on the planet
is dictated by social policies, for example such as “shelter in place”, “complete lockdown”, etc. The global population is
then allowed to evolve according to infected states of agents, over many time periods, leading to an SIR population. The
work illustrates the construction of the computational framework and the relatively straightforward application with direct,
non-phenomenological, input data. Numerical examples are provided to illustrate the model construction and the results of
such an approach.

Keywords Pandemic · Agent-based · Simulation

1 Introduction

The COVID-19 pandemic of 2020 has led to a significant
increase in research in the area of modeling and simulation
of infectious diseases. There are numerous aspects associated
with this epoch-changing event that is now facing humanity.
Macroscale (planetary) disease propagation, in addition to
the related issues of logistical and political responses, is a
central issue. Accordingly, the objective of this work is to
develop a computationally-amenable agent-based model to
investigate the behavior of an infected population by directly
working at the individual-to-individual level of interaction.
The wide-spread availability of computational power now
raises the possibility that robust agent-based modeling can
play a significant role in the analysis of infectious disease
propagation. The key feature of agent-based modeling is
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that discrete entities (agents) are used to directly represent
a population (Fig. 1). This enables the detailed analysis
of epidemiological population dynamics and the ability to
investigate the emergent structure SIR-type (Susceptible-
Infected-Removed/Recovered) populations, as well more
complex extensions, due to initially localized infections
within a population on a global planetary scale, including
the effects of social responses.

1.1 Classical basic models

Before proceeding with the construction of an agent-based
approach, it is useful to review basic concepts in the analysis
of population dynamics, which dates back over two centuries
to the work of Thomas Malthus. In 1798, he postulated that
a population, denoted p, at a future time (t + �t), is related
to the current population (at time t) by

p(t + �t) = λp(t), (1.1)
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Fig. 1 A model problem of a “planet” with a population, which experiences sudden localized infections. Left: a model schematic and right: a
computational model (blue representing currently uninfected and green representing infected)

where λ = 1 + (b − d)�t , where b is a birth rate parameter
and where d is a death rate parameter. One may write

p(t + �t) − p(t) = (λ − 1)p(t), (1.2)

leading to, in the limit as �t → 0,

�p

p
= (b − d)�t ⇒ dp

p
= (b − d)dt . (1.3)

Integrating and applying the initial condition p(t = 0) =
p(0) yields

ln(p(t)) = c + (b − d)t ⇒ p(t) = ec+(b−d)t ⇒ p(t)

= p(0)e(b−d)t . (1.4)

Variants/extensions of this simple model include interacting
subpopulations. One family of models are of particular inter-
est in this work, namely the so-called SIR-type (Susceptible-
Infected/Infectious-Removed/Recovered), described next.
Subsets of the population are assigned either S, I, or R sta-
tus. The genesis of such models is the paper from 1927 of
Kermack and McKendrick [35].

1.2 SIR sub-populationmodels

SIR models identify three subpopulation classes of individu-
als,with an assumption that the overall population is constant,
since the pandemic/epidemic time scales are faster than birth
time scales. The following are key:

• S “Susceptible”, that can contract diseases,
• I = “Infected”, that can transmit the disease and who are
infected and

• R = “Recovered/Removed” (dead or immune), where the
typical assumptions include: (a) the gain in the infected
class is at a rate proportional to the number of infected and
susceptible, that is k1SI , k1 > 0 (b) the rate of removal
of the infected is proportional to the number of infected,
k2 I , k2 > 0 and (c) the incubation period is short enough
to be negligible.

• In addition, if it is assumed that the various classes are
uniformly mixed, where for the susceptible population:

dS

dt
= −k1SI , (1.5)

while for the infected subpopulation

d I

dt
= k1SI − k2 I , (1.6)

and for the removed population

dR

dt
= k2 I . (1.7)

• Adding all of the populations together yields

dS

dt
+ d I

dt
+ dR

dt
= 0, (1.8)

where

S + I + R = p, (1.9)

where p is the total population, S(0) = So > 0, I (0) =
Io > 0, R(0) = 0, k1 > 0 is the infection rate and k2 > 0
is the death rate.
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Acrucial question is, underwhat conditions does an infection
grow, i.e. an “epidemic” occur? From Eq. 1.6, if

k1SI − k2 I > 0 ⇒ k1SI > k2 I ⇒ k1
k2

S > 1, (1.10)

and thus

d I

dt
> 0. (1.11)

Equation 1.10 provides the threshold for the susceptible
population

k1
k2

S > 1 ⇒ S >
k2
k1

(1.12)

to allow growth to occur. The parameter k2/k1 is sometimes
called the infectious contact rate, while its reciprocal is called
the recovery/removal rate. If we assume that everyone in
the beginning is susceptible (S(t = 0) = 1), then Eq. 1.10
implies that

k1
k2

> 1 (1.13)

is the condition for growth. This simple model is one of the
most basic to describe epidemics. For reviews, we refer the
reader to Murray [42].

1.3 Generalization of the SIR family of models

The basic SIR model can be extended in the following ways:

• TheSISmodel: Susceptible-Infected-Susceptible (again),
typified by the common cold.

• The SIRD model: Susceptible-Infected-Recovered-
Deceased, which distinguished between recovered and
dead.

• The MSIR model: Maternal-Susceptible-Infected-
Recovered, where the “M class” stands for immunity
derived from the mother.

• The SEIR model: Susceptible-Exposed-Infected-Recov-
ered, which distinguishes between “infected” and
“exposed”.

• The SEIS model: Susceptible-Exposed-Infected-Suscep-
tible (again), typified by the common cold, yet distin-
guishes between “infected” and “exposed”.

• The MSEIR model: Maternal-Susceptible-Exposed-
Infected-Recovered, which incorporates features of the
models above.

• The MSEIRS model: Maternal-Susceptible-Exposed-
Infected-Recovered-Susceptible, which incorporates all
of the features of the models above.

(PDE GENERATION)

GRID
POINTS

PATCH
SURFACE

DISCRETE
FUNDAMENTALLY

HOMOGENIZE

NUMERICALLY
DISCRETIZE

Fig. 2 The classical process of developing a continuum model from
an inherently discrete system, which is then re-discretized into nodes.
Information is lost in this “homogenization” process (Zohdi [53])

For overviews and details on these various models, we
refer the reader to Kermack and McKendrick [35], Murray
[42], Hethcote[30,31], Harko et al. [29], Baily [3], Altizer
and Nunn [1], Miller [40], Miller [41], Osemwinyen and
Diakhaby [44],Brauer andCastillo [12]Anderson [2],Barlett
[5],May andAnderson [38], Capasso [15] andVynnycky and
White [48]. Various features can be included, such as

• Variable contact rates,
• Adult vaccinations,
• Child vaccinations,
• Newborn vaccinations,
• Effects of age and
• Vector transmission (for example from mosquitos).

Virtually all subsequent, more complex spatio-temporal
extensions construct homogenized continuum (PDE-based)
models, incorporating the above models. These approaches
require extensive, complex, discretization techniques and
are of limited value for studies on population dynamics
with underlying complex interaction between subpopula-
tions (Fig. 2). Suchmodels have limited predictive capability
and are computationally expensive, due to the extremely
fine discretization needed to achieve tolerable numerical
accuracy. Independent of the numerical difficulties, such
modeling approaches attempt to develop continuum type
field equations, by passing to the spatio-temporal limit as
�t → 0, �x → 0 make somewhat unrealistic assumptions
in order to obtain tractable partial differential equations to
enable qualitative estimates of the true population behavior.
Onemust question the process of first homogenizing an inher-
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ently discrete population’s characteristics in order to develop
PDE-based continuum models and then re-discretizing them
into nodal values. This process is not bijective, in otherwords,
one does not recover the original discrete system (Fig. 2).
Information is lost in this process. Also, because of the sim-
plifying assumptions on interaction, births, age structuring,
etc., that are typically made, in order to obtain tractable field
equations, the resulting discrete equations are not as physi-
cally meaningful as the true discrete population interaction
that it is based upon. Essentially, in dealing with small sub-
populations, or populations with complex mixing and high
heterogeneity, the assumptions behind regularization tech-
niques leading to continuummodelsmay be difficult to justify.
This motivates developing agent based methods, which are
based on direct accounting of interactions between individ-
uals or population subgroups.

1.4 Agent-basedmodels and objectives

Agent basedmodels attempt tomodel the interaction between
individuals directly, incorporating stochastic methods and
have been used across many different disciplines, such
as: biology, business, economics, social sciences, robotics
and technology. The objective is to obtain deeper insight
into the connection between micro-interaction and emer-
gent macroscale behavior. The method first appeared in the
1940’s, but was computationally infeasible until the 1990’s.
Although there are many forms of agent-based models,
computationally, they are quite similar to particle interac-
tion models in mathematical physics. The use of the term
agent is often attributed to Holland and Miller’s 1991 paper
“Artificial Adaptive Agents in Economic Theory” [33]. The
1990’s and early 2000’s led to many approaches, often cor-
related to the concepts of swarms of agents and aggregate
movement. For reviews of the literature, see Bonabeau [11].
The attractive features of the approaches are the ability to
model individual interactions nonphenomenologically, and
to allow the system to evolve autonomously. The utility
of such approaches is that one can trivially modify the
“rules of engagement”, population sizes, reproduction rates,
etc, and provide quantitative spatial and temporal infor-
mation. Clearly, such a computational technique is easy to
implement, and it is no extra effort to increase the num-
ber of population character parameters.We refer the reader
to Zohdi [49,50,53–55], for reviews. Our objective in the
current paper is to apply similar concepts to pandemic mod-
eling, where the interaction is via infection transmission.
Specifically, we develop a robust agent-based computa-
tional framework to investigate the emergent structure of
Susceptible-Infected-Removed/Recovered (SIR)-type popu-
lations and more complex extensions on a global planetary
scale, where each agent on the surface of the planet is ini-
tially uninfected. Infections are then seeded on the planet

in localized regions. Contracting an infection depends on
the characteristics of each agent—i.e. their susceptibility and
contact with the seeded, infected, agents. Agent mobility on
the planet is dictated by social policies, for example such
as “shelter in place”, “complete lockdown”, etc. The global
population is then allowed to evolve according to infected
states of agents, over many time periods, leading to an SIR
population. The work illustrates the construction of the com-
putational framework and provides numerical examples.

Remarks: In the related field of astro-biology, there are
concerns about Earth-based microbes potentially infecting
other worlds, by being carried on spacecraft missions. The
recent discovery of water on Mars (as well as the moons of
Saturn and Jupiter) has heightened such concerns. It has been
reported that, on Mars, liquid water can possibly form sea-
sonally in locations where snow is present on soils, in the
presence of saline, producing brine (Martinez and Renno
[37]). Since terrestrial bacteria can grow brine, infection
of the Marian biosphere could be possible. The reverse is
also true, since returning spacecraft from Mars could bring
back non-terrestrial organisms back to Earth. NASA and
other space agencies have consistently reported that Bacillus
spores, subjected to years vacuum in space, cosmic radiation
and extreme temperatures, can survive, if they are shielded
by the exterior of a spacecraft. We refer readers to Beaty [6],
Fischer et al. [23], Martinez and Renno [37], Summons et al.
[46], Michalski [39] and Debus [18] for details.

2 Direct agent-based interactionmodels

Following Zohdi [53], we now construct a model problem
based on discrete rule-driven interaction between agents of
subpopulations. One can consider an agent as an individual
or a small group of individuals (a “meta-individual”).

2.1 Agent-to-agent interaction and rules of
engagement

Consider the following construction, for the “rules of engage-
ment” for intermeshed infected and uninfected subpopula-
tions, which are in close proximity to one another (Fig. 4):

• If two agents of the subpopulations, denoted (I =
in f ected) and (U = unin f ected), come within a cer-
tain distance,

||r(I )
i − r(U )

j || ≤ dIU , (2.1)

then two are said to engage in “contact”.
• If the uninfected agent is susceptible, then the agent
becomes infected.
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Fig. 3 A schematic of the
growth of subpopulations

DYNAMIC
SUBPOPULATIONS

INITIAL CONDITION POSSIBLE OUTCOME

ZONE
INFECTION

INITIALIZE AGENT CHARACTERISTICS
(a) SUSCEPTIBILITY
(b) INFECTED
(c) AGE
(d) DEAD/RECOVERED
(e) ETC.

INITIALIZE AGENT POSITIONS

COMPUTE INFECTION TRANSMISSION

COMPUTE RELATIVE PROXIMITIES

UPDATE INCUBATION PERIODS

Fig. 4 The infection zone and flow chart

• The “susceptibility” of the uninfected subpopulations is
heterogeneous (preset at the beginning of the simulation).

• The incubation period for an infected agent to either
recover or die is TI .

• Once an agent of the population perishes or becomes
immune, it cannot affect the rest of the population.

2.2 Algorithm

The algorithm is as follows:

• Step 1: Select:
• (a) The number of agents (Na) in the populations.
• (b) The infection distance.
• (c) The susceptibility of the agents.
• (d) The total simulation time T .
• (e) The cycle time = �t . The number of time-periods is

T
�t .

POLES ARE 
CONCENTRATION

CENTERS

DECREASING
AGENT DENSITYΦ

AGENT
Θ

x

r

y

z

AGENT DENSITY
INCREASING PLACEMENT

Fig. 5 Spherical coordinates used for agent placement. In this example,
agent high-density concentration centers are at the (z-poles)
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• Step 2: Generate the initial population locations on the
globe.

• Step 3: For each population, loop over each agent in the
infection radius. If so, according to the “rules of engage-
ment” in the previous section, compute the interaction of
the pair.

• Step 4: Compute the survivors and deaths of the existing
agents for the time period.

• Step 5: Repeat steps 2–4 for the next time period until
the overall simulation time is complete.

The relative ease atwhich one can generate such a population,
and step it through several time periods, is rather obvious.

2.3 Computational acceleration

There are a variety of techniques to accelerate the compu-
tations. The primary computational expense is neighbor-to-
neighbor contact checks (an O(N 2

a ) operation). To mitigate
this, one can construct so-called “interaction” or “Verlet”
lists of neighboring agents that an agent may be in con-
tact with at any given time. One can retain this Verlet list
for a preset number of time steps and then update it when
appropriate. The approach is relatively straightforward to
implement and can speed up the computations dramatically
(see Pöschel and Schwager [45] and Zohdi [51,52]). Alterna-
tive computational acceleration approaches can be achieved
via sorting and binningmethods, which proceed by partition-
ing the whole domain into bins. The agents are sorted by the
bins in which they reside. The agent interaction proceeds, bin
by bin, where the agents within a bin potentially only inter-
act with agents within their bin or neighboring bins. Parallel
processing is a further acceleration that can be employed
whereby groups of agents or bins are sent to each proces-
sor and updated periodically, sharing the agent information
between processors every few time-steps. In this work, we
only implemented the Verlet list algorithm.

3 Amodel problem

As an example, consider a population with 20,000 agents
(Fig. 6). We consider six cases of increasingly mobile sub-
populations that are initially uniformly mixed across the
globe, with agents being infected or uninfected and being
susceptible or not susceptible. We employed the following
parameters:

• Globe radius, R = 1.
• Total simulation time: T = 30.
• The infection distance: dIU = 0.01R.
• The population initially infected = 1%.
• The population that is susceptible = 25%.

• The incubation period for an agent to either recover or
die is TI = 5.

• Update cycle time = �t = 0.1.
• The location of each agent was achieved using a ran-
dom spherical coordinate scheme (see Fig. 9), whereby θ

(inclination angle) is a random number between 0 ≤ θ ≤
π and φ (azimuth angle) is a random number between
0 ≤ φ ≤ 2π , yielding the following in Cartesian coordi-
nates:

rx = Rsin(θ(t = 0))cos(φ(t = 0)), (3.1)

and

ry = Rsin(θ(t = 0))sin(φ(t = 0)), (3.2)

and

rz = Rcos(φ(t = 0)). (3.3)

• Themobility is given by (the location at an instant of time
later)

rx = Rsin(θ(t + �t))cos(φ(t + �t)) (3.4)

and

ry = Rsin(θ(t + �t))sin(φ(t + �t)) (3.5)

and

rz = Rcos(φ(t + �t)). (3.6)

This produces dense population centers at the z-poles.
The updated values for the angles are given by

Inclination mobility: θ(t + �t) = θ(t) + �θ, (3.7)

where�θ = Aθ ×β, β being a random number between
−1 ≤ β ≤ 1 and Aθ is a mobility amplitude parameter
and

Azimuthal mobility:φ(t + �t) = φ(t) + �φ, (3.8)

where�φ = Aφ ×γ , γ being a random number between
−1 ≤ γ ≤ 1 and Aφ is a mobility amplitude parameter.

Figure 6 illustrates, starting from left to right and top to bot-
tom, the progressive growth of SIR subpopulations. Shown
are results at t = 0, t = 0.2T, t = 0.4T, t = 0.6T, t = 0.8T
and t = T time, with mobility parameters: Aφ = 0.004
and Aθ = 0.004. Figure 7 shows the evolution of infected
and dead/recovered with mobility parameters: 0.0 ≤ Aφ ≤
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Fig. 6 Starting from left to right and top to bottom, the progressive growth of at SIR population. Shown are after t = 0, t = 0.2T, t = 0.4T, t = 0.6T,
t = 0.8T and t = T time, with mobility parameters: Aφ = 0.004 and Aθ = 0.004
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Fig. 7 Evolution of infected and dead/recovered with mobility parameters: Aφ, Aθ = 0.000, 0.001, 0.002, 0.003, 0.004 and 0.005
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0.005 and 0 ≤ Aθ ≤ 0.005. With increases in mobility,
there is an immediate and direct impact on the spread of
the infection, emanating primarily from the dense population
centers at the z-poles. The utility of the presented computa-
tional approach is that one can trivially modify the “rules of
engagement”, population sizes, etc., and provide quantitative
spatial and temporal information. Clearly, such a computa-
tional technique is easy to implement, and it is no extra effort
to increase the number of population character parameters.
This is straightforward to implement. Numerous additional
features can be added easily. For example, one could add
population growth in a variety of ways, such as, algorithmi-
cally:

• If an agent of a population survives beyond a certain
number of time periods, it then produces offspring, and
then perishes.

• The offspring are placed within an “offspring” radius,
centered at the spatial location of the parent. The num-
ber of children possible that an individual can have, at
maturity, is given by

of f spring = integer(φ × M) (3.9)

where 0 ≤ φ ≤ 1 is a random number and where M is
the maximum number of children possible. The function
“integer” extracts the nearest integer from (φ × M).

• After giving birth to the offspring once, the agent cannot
have offspring again.

We note that, if desired, incorporation of “forbidden regions”
i.e. “uninhabitable zones” within the domain is relatively
easily to enforce by checking at each time step whether an
individual has entered such an area (Fig. 8). If so, then the
individual is moved back outside, and a new position is recal-
culated with a different trajectory. Another extension to the
overall modeling is to provide more detail on the movement
of the agents. For example, as described at the outset of this
paper, we could have allowed for them (as well as the par-
ents) to move according to more physical rules, based on
pandemic events and stimuli. It is here where one can draw
on swarm movement models discussed earlier in the paper.
This is discussed further next.

4 Extensions

Onedirection inwhich to extend this research is in the swarm-
likemovement of agents in response to pandemic events. The
origins of swarm modeling are in the description of biologi-
cal groups (flocks of birds, schools of fish, crowds of human
beings, etc.) responses to predators or prey (Breder 1952

Fig. 8 Creating a “forbidden” zone

[13]). Early approaches that rely on decentralized organiza-
tion can be found in Beni [8], Brooks [14], Dudek et al. [20],
Cao et al. [16], Liu and Passino [36] and Turpin et al [47].
Usual models incorporate a tradeoff between long-range
interaction and short-range repulsion between individuals,
dependent on the relative distance between individuals (see
Gazi and Passino [24–26], Bender and Fenton [7] orKennedy
and Eberhart [34]). The most basic model is to treat each
individual as a point mass (Zohdi [49]), which we adopt
here, and to allow the system to evolve, based on New-
tonian mechanics, using a combination of short-range and
long-range interaction forces (Gazi and Passino [24], Ben-
der and Fenton [7], Kennedy and Eberhart [34] and Zohdi
[49,50,53–55]).1 For some creatures, the “visual field” of
individuals may play a significant role, while if the agents
are robots or Unmanned Autonomous Vehicles (UAVs) the
communication can be electronic.However, in some systems,
agents interact with a specific set of other agents, regardless
of whether they are far away (Feder [21]). This appears to
be the case for Starlings (Sturnus vulgaris). In Ballerini et al.
[4], the authors concluded, that such birds communicate with
a certain number of birds surrounding it and that that inter-
actions are governed by topological distance and not metric
distance. Interested readers are referred to Ballerini et al. [4].
We refer the reader to Zohdi [49,50,53–55] for reviews and
provide an example of such a formulation next.

4.1 An example of a swarm formulation

In order to illustrate how swarm movement is modeled, fol-
lowing Zohdi [49,50,53–55], we treat the agents as point

1 There are other modeling paradigms, for example mimicking ant
colonies (Bonabeau et al. [9]) which exhibit foraging-type behavior
and trail-laying-trail-following mechanisms for finding food sources
(see Kennedy and Eberhart [34] and Bonabeau et al. [9], Dorigo et al.
[19], Bonabeau et al. [9], Bonabeau and Meyer [10] and Fiorelli et al.
[22]).
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Fig. 9 Agent-obstacle-target model problem

masses, i.e. we ignore their dimensions. For each agent (Ns

in total) the equations of motion are

mi v̇i = mi r̈ i = � tot
i = F(Nat

i , Nao
i , Naa

i ), (4.1)

where the position of a point (agent) in space is given by the
vector r i , the velocity is given by vi = ṙ i , the acceleration
is given by ai = v̇i = r̈ i , and where � tot

i represents the
total forces acting on an agent i , Nat

i represents the inter-
action between agent i and desired targets, Nao

i represents
the interaction between agent i and obstacles and Naa

i rep-
resents the interaction between agent i and other agents. In
the context of a pandemic, examples of targets could be hos-
pitals, food distribution centers, etc., while obstacles could
be physical barriers, such as buildings.

4.1.1 Agent-target interaction

Consider agent-target interaction

||r i − T j || = (
(ri1 − Tj1)

2 + (ri2 − Tj2)
2 + (ri3 − Tj3)

2)1/2

def= dati j , (4.2)

where T j is the position vector to target j and the direction
to each target is

ni→ j = T j − r i
||r i − T j || . (4.3)

For each agent (i), we compute a weighted direction to each
target

n̂i→ j = (wt1e
−a1dati j − wt2e

−a2dati j )ni→ j , (4.4)

where the wti are weights reflecting the importance of the
target, ai are decay parameters, which is summed (and nor-
malized later in the analysis) to give an overall direction to
move towards

Nat
i =

Nt∑

j=1

n̂i→ j . (4.5)

4.1.2 Agent-obstacle interaction

Now consider agent-obstacle interaction

||r i − O j || = (
(ri1 − Oj1)

2 + (ri2 − Oj2)
2 + (ri2 − Oj2)

2)1/2

def= daoi j , (4.6)

where O j is the position vector to obstacle j and the direction
to each obstacle is

ni→ j = O j − r i
||r i − O j || . (4.7)

For each agent (i), we compute a weighted direction to each
obstacle

n̂i→ j = (wo1e
−b1daoi j − wo2e

−b2daoi j )ni→ j , (4.8)

where the woi are weights reflecting the importance of the
obstacle, bi are decay parameters, which is summed (and
normalized later in the analysis) to give an overall direction
to move towards

Nao
i =

No∑

j=1

n̂i→ j . (4.9)

4.1.3 Agent–agent interaction

Now consider agent(i)–agent( j) interaction

||r i − r j || = (
(ri1 − r j1)

2 + (ri2 − r j2)
2 + (ri3 − r j3)

2)1/2

def= daai j , (4.10)

and the direction to each agent

ni→ j = r j − r i
||r i − r j || . (4.11)

For each agent (i), we compute a weighted direction to each
agent

n̂i→ j = (wa1e
−c1daai j − wa2e

−c2daai j )ni→ j , (4.12)
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where the wai are weights reflecting the importance of the
agents, ci are decay parameters, which is summed (and nor-
malized later in the analysis) to give an overall direction to
move towards

Naa
i =

Na∑

j=1

n̂i→ j . (4.13)

4.1.4 Summation of interactions

We now aggregate the contributions by weighting their over-
all importance with weights for agent/target interaction,Wat ,
agent/obstacle interaction, Wao and agent/agent interaction,
Waa :2

N tot
i = WatNat

i + WaoNao
i + WaaNaa

i , (4.14)

normalize the result

n∗
i = N tot

i

||N tot
i || . (4.15)

The forces are then constructed by multiplying the thrust
force available by the propulsion system (foot, bicycle, car,
etc.), Fi , by the overall normal direction

� tot
i = Fin∗

i . (4.16)

We then integrate the equations of motion:

mi v̇i = � tot
i , (4.17)

yielding

vi (t + �t) = vi (t) + �t

mi
� tot

i (t) (4.18)

and

r i (t + �t) = r i (t) + �tvi (t). (4.19)

Note that if

||vi (t + �t)|| > vmax , (4.20)

then we define voldi (t + �t) = vi (t + �t) and the velocity
is rescaled

vnewi (t + �t) = vmax
voldi (t + �t)

||voldi (t + �t)|| , (4.21)

with vi (t + �t) = vnewi (t + �t).

2 The parameters in the model will be optimized shortly.

5 An algorithm for movement in a region

Consider the following algorithm:

1. Initialize the locations of the targets: T i = (Tx , Ty, Tz)i ,
i = 1, 2,...NT = targets.

2. Initialize the locations of the obstacles: O i = (Ox , Oy,

Oz)i , i = 1, 2,...NO = obstacles.
3. Initialize the locations of the agents: r i = (rx , ry, rz)i ,

i = 1, 2,...Na = agents.
4. For each agent (i), determine the distance and directed

normal to each target, obstacle and other agents.
5. For each agent (i), determine interaction functions Nat

i ,
Nao

i , Naa
i and n∗

i .
6. For each agent (i), determine force acting upon it,� tot

i =
Fin∗

i .
7. For each agent (i), integrate the equations of motion

(checking constraints) to produce vi (t + �t) and r i (t +
�t).

8. Determine if any targets have been reached by checking
the distance between agents and targets

||r i − T j || ≤ Tolerance. (5.1)

For any T j , if any agent has satisfied this criteria, then
immobilize i (fix ri ).

9. The entire process is then repeated for the next time step.

5.1 Preliminary numerical example

As a preliminary example, consider the following parame-
ters:

• Mass = 75 kg,
• 100 agents,
• 1 target,
• 10 obstacles,
• T = 2000 s,
• �t = 0.001 s,
• Initial agent velocity, vi (t = 0) = 0 m/s,
• Initial agent domain (10, 10, 0) m,
• Thrust force available by the system, Fi = 107 Nt,
• Domain of (500, 500, 0) m,
• Maximum velocity agent vmax = 2 m/s.

The vector of system parameter inputs is

�i def= {	1,	2...	N }
= {Wma,Wao,Waa, wt1, wt2, wo1, wo2, wa1,

wa2, a1, a2, b1, b2, c1, c2} (5.2)
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was given by a test parameter vector

�i def= {10.00, 5.00, 7.50, 0.25, 0.50, 0.60, 0.80, 0.30, 0.85, 0.15,
0.50, 1.00, 0.75, 0.90, 0.60}, (5.3)

selected within the following intervals:

• Overall weights: 0 ≤ Wat ,Wao,Waa ≤ 10,
• Target weights: 0 ≤ wt1, wt2 ≤ 1,
• Obstacle weights: 0 ≤ wo1, wo2 ≤ 1,
• Agent weights: 0 ≤ wa1, wa2 ≤ 1 and
• Decay coefficients: 0 ≤ a1, a2 ≤ 1, 0 ≤ b1, b2 ≤ 1,
0 ≤ c1, c2 ≤ 1.

Figure 10 illustrates the results of this parameter choice.

5.2 Parameter estimation via machine-learning

There are many parameters in the system, warranting the
use a Machine Learning Algorithm. Here we follow Zohdi
[50,54,55] in order to optimize behavior by minimizing a
cost function. For example, let us consider minimizing the
following cost function


(�) = (Ntot − Na)

Ntot
(5.4)

where Na represents the number agents that reached the target
within a specific time and Ntot represents the total number
of agents in the system. In other words, the system is being
driven to the parameters generating the best case scenario
(all agents reaching the target). The design vector of system
parameters is:

� = {	1,	2...	N }
= {Wmt ,Wmo,Wmm, wt1, wt2, wo1, wo2, wm1,

wm2, a1, a2, b1, b2, c1, c2}. (5.5)

Cost functions associated with optimization of complex
behavior are oftentimes nonconvex in design parameter space
and often nonsmooth, as is the case for the system of interest.
Their minimization is usually difficult with direct appli-
cation of gradient methods. This motivates nonderivative
search methods, for example those found in Machine Learn-
ing Algorithms (MLA’s). One of the most basic MLA’s are
so-called Genetic Algorithms (GA’s). Typically, one will use
a GA first in order to isolate multiple local minima, and then
use a gradient based algorithm in these locally convex regions
or reset the GA to concentrate its search over these more con-
strained regions. GA’s are typically the simplest scheme to
start the analysis, and one can, of course, use more sophis-
ticated methods if warranted. For a review of GA’s, see the
pioneering work of John Holland (Holland [32]), as well

as Goldberg [27], Davis [17], Onwubiko [43] and Goldberg
and Deb [28]. The GA approach is extremely well-suited
for nonconvex, nonsmooth, multicomponent, multistage sys-
tems, and involves the following essential concepts:

1. Population generation: Generate system population:

�i def= {	i
1,	

i
2,	

i
3,	

i
4, ..., 	

i
N } = {interaction

parameters, ..., etc.}i
2. Performance evaluation: Compute fitness/performance

of each genetic string: 
(�i ) and rank them (i =
1, ..., N )

3. Mating process: Mate pairs/produce offspring: λi
def=

�(I )�i + (1 − �(I ))�i+1 where 0 ≤ � ≤ 1 (Fig. 11)
4. Gene elimination: Eliminate poorly performing genetic

strings, keep top parents and generated offspring
5. Population regeneration: Repeat the processwith the new

gene pool and new random genetic strings
6. Solution post-processing: Employ gradient-based meth-

ods afterwards in the local “valleys”-if smooth enough

5.2.1 Algorithmic specifics

Following Zohdi [50,54,55], the algorithm is as follows:

• Step1: Randomly generate a population of S starting
genetic strings, �i , (i = 1, 2, 3, ..., S) :

�i def= {	1,	2...	N }
= {Wmt ,Wmo,Wmm, wt1, wt2, wo1, wo2, wm1,

wm2, a1, a2, b1, b2, c1, c2}.

• Step2: Compute fitness of each string 
(�i ), (i = 1, ...,
S)

• Step3: Rank genetic strings: �i , (i = 1, ..., S)
• Step4: Mate nearest pairs and produce two offspring,
(i = 1, ..., S)

λi
def= �(I )�i + (1 − �(I ))�i+1,

λi+1 def= �(I I )�i + (1 − �(I I ))�i+1

• Step5: Eliminate the bottom M < S strings and keep
top K < S parents and top K offspring (K offspring + K
parents +M = S)

• Step6: Repeat steps 1–6 with top gene pool (K offspring
and K parents), plus M new, randomly generated, strings

• Note: �(I ) and �(I I ) are random numbers, such that
0 ≤ �(I ) ≤ 1, 0 ≤ �(I I ) ≤ 1, which are different for
each component of each genetic string

• Option: Rescale and restart search around best perform-
ing parameter set every few generations
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Fig. 10 Starting from left to right and top to bottom, the progressive movement of a group of agents (blue) avoiding obstacles (green) to get to the
target (red)

• Remark: The system parameter search is conducted
within the constrained ranges of 	

(−)
1 ≤ 	1 ≤ 	

(+)
1 ,

	
(−)
2 ≤ 	2 ≤ 	

(+)
2 and 	

(−)
3 ≤ 	3 ≤ 	

(+)
3 , etc. These

upper and lower limits would, in general, be dictated by
what is physically feasible.

As another example, one can use such algorithms to
search for parameter sets that yield subpopulations (such as
infected (I) and recovered (R)) having similar stable sizes
after many time-periods. Mathematically speaking, this can
be expressed by writing min� 
(�), where


(�) = |I − R|
I + R

, (5.6)

and where �
def= {dIU , Aφ, Aθ , TI , etc.}, after a set number

of time periods for a given �. Clearly, there are numerous
possibilities. Typically, for populations with a finite number
of agents, therewill be slight variations in theperformance for
different random starting configurations. In order to stabilize
the objective function’s value with respect to the randomness
of the starting configuration, for a given parameter selection
(�), a regularization procedure is applied within the genetic
algorithm, whereby the performances of a series of different
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COST FUNCTION

SUCCESSIVE
PARENT/CHILDREN

GENERATION
Π

Λ

Fig. 11 The basic action of amachine learning-based genetic algorithm
(Zohdi [55])

randomstarting configurations are averaged until the (ensem-
ble) average converges, i.e. until the following condition is
met:

∣∣∣∣∣
1

Z + 1

Z+1∑

i=1


(i)(�I ) − 1

Z

Z∑

i=1


(i)(�I )

∣∣∣∣∣

≤ T OL

(
1

Z + 1

Z+1∑

i=1


(i)(�I )

)

, (5.7)

where index i indicates a different starting random config-
uration (i = 1, 2, ... , Z ) that has been generated and Z
indicates the total number of configurations tested. In order
to implement this in the genetic algorithm, in step 2, one sim-
ply replaces computewith ensemble compute, which requires
a further inner loop to test the performance of multiple start-
ing configurations. Development of such stochastic Machine
LearningAlgorithms for complex,multiscale, systems is cur-
rently under investigation by the author.
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